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ABSTRACT  

Introduction: Lowering extracorporeal circuit temperature (T°CRRT) below core 

temperature (T°core) during continuous renal replacement therapy (CRRT) may 

decrease hemodynamic instability (HIRRT) by affecting cardiac output (CO) and 

vasomotor tone. This study aimed to evaluate the causal relationship between core-to-

CRRT temperature gradient and HIRRT longitudinal risk. 

Methods: This ancillary analysis of a prospective, single-center study 

(NCT03139123) included patients with stage 3 acute kidney injury, who received CRRT 

for <24h and had continuous cardiac index monitoring. T°CRRT, T°core and 

hemodynamics parameters were collected 4-hourly between inclusion and day 7. 

Temperature gradient (∆T°) corresponded to T°core – T°CRRT. HIRRT (defined as a mean 

arterial pressure < 65 mmHg requiring therapeutic intervention) were reported hourly. 

A mediation analysis evaluated the effect of ∆T° on HIRRT longitudinal risk during 

follow-up, mediated through cardiac output and mean arterial pressure.  

Results: 42 patients were enrolled in this ancillary analysis (age 68 [58–76], 

SOFA 12 [8–15] and 33 (79%) with sepsis), and were followed over 119 [57–143] hours 

(N=1012 observations). Increasing ∆T° was significantly associated with higher heart 

rate, CO and mean arterial pressure (MAP), and lower norepinephrine dose, and 

reduced HIRRT risk in univariate analysis (0.97 [0.95–0.99] per 0.1°C increase, 

P<0.01). Causal mediation showed that ∆T° ≥ 0°C significantly decreased HIRRT risk 

through improved MAP and CO (mediated: 55% and 38% of the total effect, 

respectively). 

Conclusions: During CRRT, increasing ∆T° led to a lower risk of HIRRT, through 

an improvement in both MAP and CO.  
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INTRODUCTION 

Hemodynamic instability related to renal replacement therapy (HIRRT) is a 

complication observed with all renal replacement therapy (RRT) techniques commonly 

used in the intensive care unit (ICU). It is associated with higher mortality, uncontrolled 

fluid balance and poorer renal recovery. HIRRT is multifactorial and its onset may be 

consequential to the underlying clinical condition’s evolution or inadequate RRT 

settings, which may alter cardiac output (CO) or decrease systemic vasomotor tone, 

uncompensated by physiological feedback (1). 

Most often, fluid removal by net ultrafiltration is identified as being the sole factor 

(and RRT setting) responsible for an episode of HIRRT, but other mechanisms may 

also play a role (2). Continuous RRT (CRRT) is a strong contributor to body heat loss 

through heat dissipation in the extracorporeal circuit and has led to the use of 

extracorporeal heating devices to compensate thermal loss. On the other hand, 

excessive heat transfer to the patient may alter vasomotor tone (arterial but also 

venous, with an unknown effect on venous return and cardiac preload) and cardiac 

output (through an increase in heart rate), which may potentially generate 

macrocirculatory compromise, hemodynamic instability and an increased risk of 

HIRRT.  

Cooling the extracorporeal circuit during RRT may hence theoretically improve 

hemodynamic stability in critically ill patients, but its effects during CRRT remain 

insufficiently studied. During intermittent hemodialysis, Edrees et al. (3) observed a 

significant reduction in hypotensive episodes when the dialysate temperature was set 

at 35°C compared to 37°C. In patients undergoing CRRT, Robert et al. (4) showed that 

setting the replacement fluid’s temperature at 36°C over 6h increased mean arterial 

pressure (MAP) while allowing for a decrease in catecholamine infusion dosage but 

did not account for the temperature gradient existing between body core temperature 

and the extracorporeal circuit. 

We hypothesized that setting the extracorporeal circuit temperature (T°CRRT) 

below core temperature (T°CORE) during CRRT may decrease HIRRT risk, through the 

effects of relative heat loss on cardiac output and vasomotor tone. The primary 

objective of the study was to evaluate the causal relationship existing between core-
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to-CRRT temperature gradient and HIRRT longitudinal risk, mediated by MAP and 

cardiac output, in patients treated with CRRT.  

METHODS  

Design 

We performed an ancillary analysis of the PRELOAD CRRT study (5) 

(NCT03139123), a prospective, observational, single-center study conducted between 

May 2017 and September 2020 in the medical ICU of the Croix Rousse university 

hospital in Lyon, France. The study was approved by an ethics committee (CPP Ile de 

France IV, ID-RCB 2017-A00483-50). The PRELOAD CRRT study aimed to describe 

the prevalence of preload-dependent HIRRT during CRRT.  

Study population 

Eligible patients were adults with Kidney Disease – Improving Global Outcome 

(KDIGO) stage 3 acute kidney injury undergoing CRRT for less than 24 hours and 

monitored by means of a calibrated continuous cardiac output monitoring device. 

Exclusion criteria were impossibility or contraindication to perform postural maneuvers 

(lower limb amputation, inferior vena cava obstruction, pregnancy, intracranial 

hypertension), decision to withhold treatment, lack of affiliation to social security, legal 

protective measures, and previous participation in the study. Patients were followed for 

a maximum of 7 days from the time of inclusion, or until death, or until the study 

procedures could no longer be performed (due to discontinuation of CRRT or CO 

monitoring). 

Temperature monitoring and management 

Temperatures were collected 4-hourly during the observation period. T°CORE was 

continuously monitored at the tip of the PiCCO® arterial catheter (Pulsion Medical, 

Feldkirch, Germany) positioned in the femoral artery, and automatically reported in 

electronic ICU charts. 4-hourly T°CORE was further categorized into three classes: 

hypothermia (< 36°C), normothermia (36 to 37.5°C), and hyperthermia (> 37.5°C). 

T°CRRT corresponded to the temperature set on the CRRT monitor by the 

treatment team and was collected every 4 hours. T°CRRT was adjustable by steps of 
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1°C between 35°C to 39°C on the monitors (Multifiltrate Pro, Fresenius Medical Care, 

Germany). Effective extracorporeal circuit fluid temperatures were not measured.  

Consequently, 4-hourly core-to-CRRT temperature gradient (∆T°), defined as the 

difference between T°CORE and T°CRRT, was positive if T°CORE was superior to T°CRRT 

and negative if it was inferior to T°CRRT. 4-houlry observations were further classified 

based on ∆T° into three categories: ≥0°C resulting in heat loss, between –2 to 0°C 

considered neutral heat transfer, and < –2°C indicating heat gain.  

For descriptive reasons, we classified patients into 3 groups based on the 

predominant, non-neutral, temperature gradient observed during the observation 

period: ∆T° < –2°C group if more than 30% of the patient’s 4-hourly observations had 

a ∆T° < –2°C, ∆T° ≥0°C group if more than 30% of 4-hourly observations had a ∆T° 

≥0°C, and ∆T° –2°C  to 0°C group if none of the 2 preceding conditions were met. 

Temperature management and T°CRRT setting were not protocolized, with the limit 

that the treating team targeted normothermia in all patients, using any available means, 

including T°CRRT modifications. Furthermore, in case of hypothermia, external warming 

blankets could be used. Room temperatures were maintained within a controlled range 

of 19°C to 24°C. 

Participants follow up 

 The following data were collected prospectively in electronic case report forms 

every 4 hours during follow-up: MAP, central venous pressure (CVP), heart rate (HR), 

stroke volume index (SVI), cardiac index (CI), preload dependence status, global end-

diastolic volume index, extravascular lung water index, pulmonary vascular 

permeability index and systemic vascular resistance index. Indexed values were 

normalized to body surface (Dubois’s formula), and norepinephrine dosage (as 

tartrate) to ICU admission body weight. 

Hemodynamics measurements 

We monitored patients with acute circulatory failure with a calibrated continuous 

cardiac output device using pulse-contour analysis (PiCCO® system, Pulsion Medical, 

Feldkirch, Germany), with transpulmonary thermodilution (TPTD) calibration 
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performed every 4 hours using three injections of normal saline performed on the 

venous central line. 

The assessment of preload dependence involved passive leg raising (PLR), 

deemed positive if the continuous cardiac output (CCO) increased by more than 10%, 

or Trendelenburg maneuvers, positive if CCO > 8%. High-quality hemodynamic 

monitoring criteria included correct positioning at the phlebostatic level of all pressure 

probes (CVP and MAP) and fast flush test verifications to maintain accurate pressure 

readings.  

Episodes of HIRRT, defined by MAP < 65 mmHg requiring therapeutic 

intervention (fluid resuscitation, increase or introduction in norepinephrine, UFNET 

decrease or cessation), were also tracked and reported hourly throughout patient 

follow-up. 

CRRT settings  

The clinician in charge determined the indication, CRRT modality, and settings in 

accordance with international guidelines and unit protocols. CRRT was indicated for 

patients with acute circulatory failure meeting the initiation criteria of the delayed 

strategy of the AKIKI trial. CRRT modalities included continuous veno-venous 

hemofiltration with heparin (CVVH-hep) or continuous veno-venous hemodialysis with 

regional citrate anticoagulation (CVVHD CiCa) using Fresenius Medical systems.  

CVVH-hep was the preferred technique for patients with indication for systemic 

anticoagulation, acute liver failure, or any contraindications to citrate regional 

anticoagulation (arterial lactate > 4 mmol/L, metformin intoxication), or based on 

clinician preference.  

CRRT monitors (with integrated heating systems) were the Fresenius Multifiltrate 

Pro with an AV-1000S membrane (Fresenius Medical Care, Bad Homburg, Germany). 

Replacement fluids were Hemosol B0 (Baxter, Deerfield, IL, USA), or MultiBic K0 

(Fresenius Medical Care, Bad Homburg Germany) for CVVH, and Ci-Ca Dialysate K2 

(Fresenius Medical Care, Bad Homburg Germany) for CVVHD. CRRT effluent flow rate 

was set at 20-25 ml.kg-1.h-1, using ICU admission body weight. Blood flow rate was set 

to 200-300 ml.min-1 with CVVH, and to one twentieth (in ml.min-1) of the dialysate flow 
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rate (in ml.h-1) for CVVHD with citrate regional anticoagulation, as per manufacturer 

recommendations. 

Statistics 

No sample size calculation was performed for the ancillary study; sample size 

calculation of the PRELOAD CRRT study is reported in the princeps publication. 

Statistical analyses were preformed using the R software (version 4.1.3). A P value 

under 0.05 was used to define statistical significance. Continuous data are reported 

using median [interquartile range] and categorical data using count (percentage).  

The analysis was performed on all included patients, including those whose 

observation period did not reach day 7. Missing variables during follow-up were 

imputed on 10 datasets by predictive mean matching for continuous variables and 

logistic regression for categorical variables. Comparison between study groups of 

continuous variables measured at inclusion was performed using the Kruskal-Wallis 

test, and the Fisher test for categorical variables. 

In all following models and regression analysis described below, mixed effects 

were used with the visit number (continuous) as the random slope nested in a random 

intercept corresponding to the patient identification number. Variables were scaled and 

centered prior to regression; transformation was considered in case of significant 

skewness. Also, because temperature gradient was correlated with T°CORE (coefficient 

of correlation r 0.73, coefficient of determination R2 0.53) and potentially affected by 

other covariates (age, sepsis, invasive mechanical ventilation, CRRT set blood flow 

and sedation), an inverse probability of treatment weighting (IPTW) vector was 

determined using the covariate balancing propensity score (CBPS, Supplemental 

figure S1) to weight models’ coefficients.  

Association of temperature gradient with longitudinal hemodynamics was first 

performed using categorized ∆T° within each T°CORE categories in bivariate analysis 

(including the evaluation of the interaction between the 2 explanatory variables). Then 

the association of ∆T° with longitudinal hemodynamics was evaluated using ∆T° as a 

continuous explanatory variable, with or without CBPS weighting. A sensitivity analysis 
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was performed in the subset of observations with a normal T°CORE (between 36°C and 

37.5°C).  

Univariate association of demographics, severity of disease variables, 

longitudinal hemodynamics and weighted temperature gradient with HIRRT 

longitudinal risk (i.e. the risk of presenting an HIRRT in the following 4 hours of the 

index observation) during follow-up were evaluated using generalized linear regression 

models (using the binomial law), expressed using their odds ratio and corresponding 

95% confidence interval. A sensitivity analysis of HIRRT risk prediction by temperature 

gradient in observations with a normal T°CORE was also performed (without weighting). 

This was followed by a multivariate regression analysis, using variables deemed 

physiologically relevant to predict HIRRT risk. Multicollinearity and interactions were 

systematically checked for. Quadratic factors applied to continuous predictors were 

also tested. The models’ calibration and goodness-of-fit were evaluated using the C-

statistic and the Hosmer-Lemeshow test, respectively. 

Multiple causal mediator analysis 

Supplemental figure S2 shows the hypothesized causal relation existing 

between ∆T° and HIRRT risk, mediated through mean arterial pressure and cardiac 

output (including the effect of cardiac preload) by means of directed acyclic graph. The 

figure also shows the pre-treatment confounders that were accounted for by the IPTW-

based CBPS, and the post-treatment confounders associated with HIRRT risk (non-

cardiovascular Sepsis-related Organ Failure Assessment [SOFA], arterial lactate 

concentration and norepinephrine dose). 

Then, a multiple causal mediator analysis was performed, using the methodology 

developed by Imai and Yamamoto (6), which allows the conjunct assessment of 

multiple mediators (i.e. cardiac output and MAP). Weighted temperature gradient 

dichotomized as being ≥ 0°C or < 0°C was used in the mediation models to predict 

HIRRT risk in the following 4 hours. From these models, the average direct (ADE) and 

average causal mediated (ACME) effects were quantified, with corresponding 95% 

confidence intervals. Sensitivity analyses were performed using a ∆T° cutoff of –1°C, 

in the subset of observations with normothermia, and based on the preload 

dependence status. Robustness of mediation models to unidentified confounders (i.e. 
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sequential ignorability) were evaluated by varying a correlation ρ parameter existing 

between the residuals of the mediator and outcome regressions (7).   

RESULTS 

Cohort description  

Forty-two patients were enrolled and were followed over 119 [57–143] hours, for 

a total of 1012 observations. Median age was 68 [58–76], 62% patients were males, 

the SOFA score was 12 [8– 15], and 52% were in septic shock at time of inclusion. 

Patients’ characteristics at inclusion are reported in Supplemental table S1. The delay 

between ICU admission and CRRT initiation was 1 [0–3] days. The CRRT settings at 

inclusion were similar between the 3 groups and the principal CRRT modality was 

CVVH-hep (Supplemental table S2). Baseline hemodynamics are shown in 

Supplemental table S3.  

Temperature course over time 

Median ∆T° during follow-up was -1.3 [-2.4– +0.1] °C. At time of inclusion, T°CORE 

were significantly different between the 3 groups of temperature gradient (P<0.01) and 

most patients were in the [36 to 37,5°C] T°CORE group (Supplemental table S4). 

Figure 1 shows the relationship between T°CORE, T°CRRT, and temperature gradient. 

Supplemental figure S3 shows T°CORE, T°CRRT, and temperature gradient over the 

observation period (Supplemental figure S4) for temperatures’ longitudinal course 

over time in individuals 
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Figure 1. Core temperature, CRRT set temperature and temperature gradient  

 

The figure shows the rela/onship between core temperature (measured on the PiCCO® device in 

arterial femoral bloodstream) and the set temperature on the CRRT monitor. A nega/ve temperature 

gradient indicates that the core temperature was below the set temperature on the CRRT monitor. The 

grey shade corresponds to temperature gradient between -2°C and 0°C. Data points are categorized 

based on the temperature gradient value (< -2°C in red, between -2 and 0°C in white, and ≥ 0°C in blue). 

The blue and red shades represent hypothermia (core temperature < 36°C) and hyperthermia (>37.5°C 

of core temperature). 
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Association of temperature gradient with hemodynamics 

A ∆T° ≥ 0°C in normothermic and hyperthermic T°CORE observations was 

associated with higher MAP, cardiac output, heart rate and lower norepinephrine dose 

(Figure 2, Supplemental figure S5 for observed values). When considered 

continuously, a 1°C increase in ∆T° was associated with a significant increase in MAP, 

heart rate and cardiac output but not with SVI or the relative change in CCI (continuous 

cardiac index) during a postural maneuver (Table 1). 

 

 

 

 

Table 1. Association of temperature gradient with hemodynamic parameters during follow-up. 

 

 

 
Temperature gradient, 

per 1°C increase 

Variables (4-hourly observations) 

Unweighted 

All 

observations 

P value 

Weighted 

All 

observations 

P value 

Unweighted 

Normothermic 

observations* 

P value 

Mean arterial pressure, mmHg 1.05±0.33 <0.01 1.05±0.39 0.01 1.06±0.44 0.02 

Cardiac index, L.min-1.m-2 0.10±0.02 <0.01 0.07±0.02 0.00 0.09±0.03 <0.01 

Heart rate, min-1 2.90±0.43 <0.01 2.2±0.45 0.00 2.53±0.58 <0.01 

Stroke volume index, ml.m-2 -0.12±0.24 0.61 -0.13±0.28 0.55 -0.08±0.33 0.76 

Relative change in CCI during postural 

maneuver, % 
0.49±0.34 0.15 0.24±0.37 0.57 0.72±0.46 0.33 

Norepinephrine dose (tartrate), µg.kg-

1.min-1 
-0.04±0.02 0.13 -0.08±0.02 0.01 -0.04±0.02 <0.01 

Data is estimate ± standard error 

*: observations with a core temperature between 36 and 37.5°C 

Mixed effects linear regression models were run on 10 imputed datasets (N=1012 observations in each dataset), with 

temperature gradient as the fixed effect, the hemodynamic variable as the dependent variable, visit number as the random 

slope nested in a random intercept corresponding to the patient identification number. Variables were scaled and centered 

prior to regression (norepinephrine required additional transformation using the Box-Cox method due to leftward skewness). 

Fixed effects were then pooled using Rubin’s rule and descaled to the original hemodynamic parameter scale. Models 

included an offset corresponding to the baseline hemodynamic value at time of inclusion. Weighting was performed using 

the CBPS method to adjust for the effect of pre-treatment confounders on temperature gradient. P values were bootstrapped 

over 500 replicate datasets. 

CCI: continuous cardiac index by pulse contour analysis 
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Figure 2. AssociaJon of hemodynamic parameters with temperature gradient and core 

temperature.

 

 

 

Interaction :P = 0.096

Gradient :P = 0.035

Interaction :P = 0.105

Gradient :P = 0.025

Interaction :P = 0.119

Gradient :P = 0.002

Interaction :P = 0.221

Gradient :P = 0.718

Interaction :P = 0.564

Gradient :P = 0.701

Interaction :P = 0.019

& #

65

70

75

80

2.0

2.5

3.0

3.5

80

90

100

110

25

30

35

40

0

5

10

15

0.0

0.5

1.0

1.5

2.0

< 36°C 36 to 37.5°C >37.5°C < 36°C 36 to 37.5°C >37.5°C

< 36°C 36 to 37.5°C >37.5°C < 36°C 36 to 37.5°C >37.5°C

< 36°C 36 to 37.5°C >37.5°C < 36°C 36 to 37.5°C >37.5°C

Core temperature, °C Core temperature, °C

Core temperature, °C Core temperature, °C

Core temperature, °C Core temperature, °C

M
e
a
n
 a

rt
e
ri
a
l p

re
s
s
u
re

, 
m

m
H

g

C
a
rd

ia
c
 in

d
e
x
, 
m

l.m
in
−

1
.m

−
2

H
e
a
rt

 r
a
te

, 
m

in
−

1

S
tr

o
k
e
 v

o
lu

m
e
 in

d
e
x
, 
m

l.m
−

2

P
L
R

 c
h
a
n
g
e
 in

 C
C

I,
 %

N
o
re

p
in

e
p
h
ri
n
e
, 
µ
g
.k

g
−

1
.m

in
−

1

Temperature gradient, °C

< -2°C

0 to -2°C

≥ 0°C

Temperature gradient, °C

< -2°C

0 to -2°C

≥ 0°C

Temperature gradient, °C

< -2°C

0 to -2°C

≥ 0°C

Temperature gradient, °C

< -2°C

0 to -2°C

≥ 0°C

Temperature gradient, °C

< -2°C

0 to -2°C

≥ 0°C

Temperature gradient, °C

< -2°C

0 to -2°C

≥ 0°C

A B

C D

E F

(CC BY−NC−ND 4.0) FRAIRE



 

 

 

30 

The figure shows the mean value of mean arterial pressure (A), cardiac index (B), heart rate (C), stroke 

volume index (D), rela/ve change in CCI during a postural maneuver (E) and norepinephrine dose (F) 

based on the core temperature category (x axis) and the temperature gradient (< -2°C in red, between 

-2 and 0°C in grey, and ≥ 0°C in blue) during longitudinal follow-up (4-hourly observa/ons). The 

represented values are the marginal means (and associated standard error) determined from a mixed 

effect model with the hemodynamic parameter as the dependent variable, temperature gradient 

category and core temperature category as the explanatory variables (with an interac/on term if 

significant). Models’ random effects were a random slope of visit number nested in a random intercept 

corresponding to the pa/ent iden/fica/on number. An offset was inserted in the model, corresponding 

to the hemodynamic parameter value at baseline. Marginal means were determined in 10 imputed 

datasets (N=1012 observa/ons in each dataset), and pooled using Rubin’s method. Variables were 

scaled prior to regression (with addi/onal Box-Cox transforma/on for norepinephrine due to lelward 

skewness) and descaled aler. For all variables, interac/on between the 2 explanatory variables was 

checked. If significant, a post-hoc pairwise comparison was performed using Sidak’s method. P values 

were bootstrapped over 500 replicate datasets. Collinearity between the 2 categorical variables was 

eliminated using a variance infla/on factor < 3. 

#: P<0.05 between gradient category < -2°C (red) and >0°C (blue) in post-hoc pairwise analysis; &: 

P<0.05 between gradient category -2°C to 0°C (grey) and >0°C (blue) in post-hoc pairwise analysis. 

CCI: con/nuous cardiac index by pulse contour analysis. 
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HIRRT risk and temperature gradient 

The overall number of HIRRT episodes was 214, with a median number of 

episodes per patient of 4 [3–8] during follow-up and was significantly more frequent in 

the ∆T° < -2°C group (Supplemental table S5). In univariate analysis, HIRRT risk 

significantly decreased with increasing temperature gradient (Figure 3), which was 

also confirmed in normothermic observations (Supplemental figure S6). In 

multivariate analysis (which included adjustments with the hemodynamic mediators), 

∆T° was not significantly associated with HIRRT longitudinal risk (Table 2, univariate 

analyses presented in Supplemental table S6). Of note, no significant interaction 

existed between MAP and cardiac output with HIRRT risk prediction. 
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Figure 3. AssociaJon of temperature gradient with longitudinal HIRRT risk during follow-up. 

 

The figure shows the predicted risk of HIRRT associated with temperature gradient during follow-up 

(P=0.01). Gradient categories are also represented. The grey shade represents the standard devia/on 

of the predic/on. Predic/on was performed using a generalized linear regression mixed effects model, 

with HIRRT as the dependent variable, temperature gradient as the explanatory variable, and applied 

to 10 imputed datasets. Models’ random effects were a random slope of visit number nested in a 

random intercept corresponding to the pa/ent iden/fica/on number. Model was weighted for the core 

temperature, using the CBPS method. Model coefficients were then pooled, and applied to a synthe/c 

dataset with temperature gradient varying between the lowest and highest value observed in the 

cohort. For each imputed datasets, the C-sta/s/cs (and its 95% confidence interval, Delong’s method) 

and the Hosmer-Lemeshow goodness-of-fit test was performed, and their results pooled. Final model’s 

C-sta/s/cs: AUC: 0.59 [95% confidence interval: 0.57–0.61]; Hosmer-Lemeshow goodness-of-fit test: 

P=0.02. 
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Table 2. Multivariate analysis of variables associated with longitudinal HIRRT risk 

 
 HIRRT risk in the following 4h 

Variables (4-hourly observations) 
Odd ratio 

[95% c.i.] 
P value 

Mean arterial pressure, per 10 mmHg increase*  <0.01 

First degree component 0.08 [0.02–0.38]  

Second degree component 1.01 [1.00–1.02]  

Cardiac index, per 0.1 L.min-1.m-2 increase 0.99 [0.96–1.02] $$ 

Relative change in CCI during postural maneuver, per 1% increase 1.15 [1.06–1.24] $$ 

Relative change in CCI × cardiac index (interaction term) 1.00 [0.99–1.00] $$ 

Norepinephrine dose (tartrate), per 0.1 µg.kg-1.min-1 increase -|| - 

Temperature gradient, per 0.1°C increase (unweighted) 0.99 [0.98–1.01] 0.33 

Post treatment confounders   

Non-cardiovascular SOFA score, per 1 point increase 0.94 [0.90–0.98] <0.01 

Delay since last HIRRT < 8h (reference is ≥ 8h) -|| - 

Daily lactate, per 1 mmol. L-1 increase 2.40 [1.23–4.69] 0.02 

*: quadratic polynomial factor in the model; ||: not retained in the model after backward stepwise selection; $$: 

significant interaction term between cardiac index and relative change in CCI (P<0.05). 

The mixed effects generalized linear regression model were run on 10 imputed datasets (N=970 observations in each 

dataset, due to the absence of follow-up in the next 4h regarding HIRRT at that time point), with the variables of 

interest as the fixed effects, HIRRT as the dependent variable, visit number as the random slope nested in a random 

intercept corresponding to the patient identification number. Variables inserted in the initial model were those with 

a P value < 0.20 in univariate analysis and deemed physiologically relevant to predict HIRRT risk. Variables were scaled 

and centered prior to regression (norepinephrine required additional transformation using the Box-Cox method due 

to leftward skewness). Backwards stepwise model selection was performed using Akaike’s information criterion. 

Variables retained in the final model were those retained in at least 8 of the 10 imputed datasets (delay since last 

HIRRT < 8h: 4 votes, norepinephrine dose: 4 votes). Fixed effects were then pooled using Rubin’s rule and descaled to 

the original hemodynamic parameter scale. No weighting was applied. For each imputed datasets, the C-statistics (and 

its 95% confidence interval, Delong’s method) and the Hosmer-Lemeshow goodness-of-fit test was performed, and 

their results pooled. Final model’s C-statistics: 0.78 (95% confidence interval: 0.75–0.82), Hosmer-Lemeshow 

goodness-of-fit test: P=0.35.  

95% c.i: 95% confidence interval; CCI: continuous cardiac index by pulse contour analysis; HIRRT: hemodynamic 

instability related to renal replacement therapy; SOFA= sepsis-related organ failure assessment. 
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Causal mediation 

Causal mediation analysis (Figure 4) showed that a ∆T° ≥ 0°C significantly 

decreased HIRRT risk, compared to a gradient < 0°C, mediated through both an 

increase in MAP and cardiac output (proportion mediated: 55% and 38% of the total 

effect of ∆T° on HIRRT risk, respectively). No significant direct (unmediated) effect of 

∆T° in HIRRT risk was identified. The analysis also showed that a higher MAP or 

cardiac output would nevertheless lead to a decreased HIRRT risk in observations with 

a ∆T° < 0°C. Supplemental figures S7, S8 and S9 shows the results of the 

prespecified sensitivity mediation analyses. 
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Figure 4. MediaJon analysis  

 

The figure shows the weighted es/mates associated with a temperature gradient ≥ 0° (in blue, treated), compared 

to a temperature gradient < 0°C (in red, control), mediated by mean arterial pressure and cardiac index (ACME, 

average causal mediated effect). The label “treatment” denotes the effect of the mediator (increasing MAP or CI) 

on HIRRT risk in observa/ons with a gradient > 0°C (compared to ≤ 0°C), while the label “control” indicates the 

mediator’s effect (increasing MAP or CI) on HIRRT risk if the gradient was ≤ 0°C (compared to > 0°C). The figure 

also shows the average direct (white dots) and total effect (sum of direct and indirect effects, in grey) of 

temperature gradient on HIRRT longitudinal risk. The media/on model was designed using the methodology 

developed by Imai and Yamamoto (2013), which allows the incorpora/on of alterna/ve mediators when 

performing mul/ple causal analysis. Hence, 2 models were designed: one with the mean arterial pressure as the 

main mediator, and cardiac index as the alterna/ve mediator. The second model did the opposite (cardiac index 

as the main mediator and mean arterial pressure as the alterna/ve mediator). An interac/on term between the 

treatment (temperature gradient) and the mediator (mean arterial pressure or cardiac index) was also included. 

The media/on model incorporated the following post-treatment confounders: non cardiovascular SOFA, 

norepinephrine dose, and daily arterial lactate concentra/on. The models were also weighted for pre-treatment 

cofounders (weights determined using the CBPS method). Models were evaluated on 10 imputed datasets, and 

their results pooled using Rubin’s rule. Nonparametric confidence intervals were bootstrapped over 600 replicate 

datasets. Sensi/vity analyses showed that the models were poten/ally suscep/ble to poten/al unaccounted-for 

confounders (R2* and R_2 = 0.1). 
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DISCUSSION 

Main results 

In this prospective, observational, single center study of a cohort of patients 

treated with CRRT and receiving advanced hemodynamic monitoring, we found that 

an increasing ∆T° was significantly associated with higher cardiac output and MAP, as 

well as with a lower HIRRT risk. A cooling temperature gradient (∆T° ≥ 0°C, i.e. a CRRT 

temperature setting equal or inferior to core temperature) significantly decreased 

HIRRT risk, compared to a ∆T° < 0°C, mediated through both an increase in MAP and 

cardiac output. 

Relationship to previous studies 

A cool dialysate strategy (usually 1 or 2°C below body temperature) is effective 

in patients with end-stage kidney disease undergoing intermittent hemodialysis on 

preventing intradialytic hypotension (8)(9). A systemic review and meta-analysis 

conducted in 2016 supported the evidence of using a cool dialysate to enhance 

hemodynamic tolerance during renal replacement therapy on chronic end-stage kidney 

disease patients undergoing hemodialysis (10). 

In the context of critical illness, Schortgen and al. demonstrated that cooling the 

dialysate to lower body temperature reduced the risk of intradialytic hypotension in 

critically ill patients undergoing intermittent hemodialysis, along with other 

interventions(11). Edrees and al. also observed in a prospective randomized cross-

over pilot study of patients receiving sustained low-efficiency dialysis (SLED) that a 

cool dialysate strategy led to significantly less HIRRT compared with dialysate 

temperature of 37°C(3). Finally, during CRRT, Robert and al. reported that cooling the 

replacement fluids to 36°C had no impact on body temperature but led to increased 

MAP and decreased catecholamine infusion dosage, in line with our results, although 

they reported no cardiac output data and could not conclude regarding HIRRT risk 

prevention (4).  

Although the effect of cooling on MAP and norepinephrine dosage has been 

described before, the effect of a positive ∆T° gradient on heart rate and cardiac output, 

and subsequent protective effect on HIRRT risk, are less documented. External cooling 
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(applied to the peripheral/cutaneous envelope) is known to generate an increase in 

cardiac output, energy expenditure and oxygen consumption (VO2) in exercising 

healthy subjects, in relation with the increase in muscle mass activity (shivering) and 

hypothalamus-driven neurohormonal activation aiming to maintain core temperature 

constant. On the other hand, intensive therapeutic cooling of septic and febrile patients 

with invasive mechanical ventilation has repeatedly shown a marked decrease in 

cardiac output (12), VO2 and energy expenditure (13,14), especially in sedated, 

paralyzed patients. Among those, Rokyta et al. observed that cooling patients 

undergoing CRRT (using a replacement fluid temperature of 20°C), with septic shock 

and mild hyperthermia (> 37.5°C) led to decreased VO2, cardiac output and heart rate 

(15). These contrasting results, contrary to our observations (where cardiac output 

increased), are related to the fact that these studies applied intensive cooling to 

generate a drastic fall in body core temperature (by cooling the dialysate down to 20°C 

or by turning off the heater, implying a ∆T° of 17°C or more). These conditions are in 

stark contrast with the condition met by our population exposed to an absolute 

difference between CRRT temperature and core temperature of a maximum of ±2°C, 

and in which the counteracting, core heating, response may not have been 

antagonized. 

Implications of study findings 

Our results showed that during CRRT, increasing the ∆T° between T°CORE and 

T°CRRT led to a lower risk of HIRRT, through an improvement in both MAP and cardiac 

output. These elements suggest that modifying the ∆T° by setting the T°CRRT below 

T°CORE might contribute to improve hemodynamic management and resuscitation. 

Furthermore, setting T°CRRT should probably account for the starting core temperature, 

to limit inadequate or excessive hypothermia, or on the contrary deleterious over-

heating. Consequently, lower dialysate temperature might be a potential RRT-related 

interventions to limit HIRRT by promoting vasoconstriction and cardiac output. 

Hypothermia is known to contribute to coagulopathy in trauma patient (16), and 

cooling patients undergoing CRRT could lead to the same complication by inhibiting 

the initiation phase of thrombin generation and fibrinogen synthesis. However, a critical 

temperature of 34°C was identified (17), below which platelet function is significantly 

impaired, a temperature that was not observed in our cohort. Furthermore, if mild or 
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relative hypothermia does alter coagulation, a potential benefit would be prolonged 

filter lifespan, although we are unable to conclude regarding this matter. 

Furthermore, exposure to cold temperatures affects cellular and molecular 

defenses against pathogens in both humans and animals and causes secretion of 

norepinephrine, cortisol and decreased lymphoproliferative responses because of 

stress state induction. Indeed, hypothermia had significant effects on the immune 

system by suppressing the innate immune function, reducing monocyte HLA-DR 

expression and altering cytokine production and may be associated with increased 

septic complications and mortality (18,19). Further studies are needed to explore these 

potential adverse effects. 

Strengths and limitations  

Strengths of the study included the high number of HIRRT episodes collected that 

represented many situations. Secondly, the prospective nature of the study minimized 

the occurrence of missing values, which were nevertheless considered during 

statistical analysis. Thirdly, we used advanced statistical methodology including causal 

mediation analysis, multiple imputation and sensitivity analyses to stress the 

robustness of our results. 

This study has several limits that must be addressed. First, because of the single-

center study design, extrapolation of our results to other ICUs may be questionable. 

Second, there is no standardized definition of HIRRT, and our chosen definition may 

be debatable. Nevertheless, we used a straight-forward definition that can easily and 

commonly be used in ICUs. Third, we did not report skin temperature (a potent 

mediator of core temperature control) and effective CRRT circuit temperature, which 

limits the physiological interpretation of the tested interventions. In addition, although 

advanced hemodynamic monitoring was in place, we lack the data to estimate VO2 

and further describe the effect of ∆T° on energy expenditure and gas exchange. 

However, given the significant effect of the ∆T° on heart rate and cardiac output, this 

physiological response to mild cooling appears to be the more plausible explanation. 

Finally, it would have been interesting to quantify the impact of ∆T° on microcirculatory 

parameters such as mottles extension or capillary refilling time. 
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CONCLUSIONS  

In this single-center, prospective, causal mediation study, setting the CRRT 

temperature lower than body temperature significantly reduced the risk of HIRRT 

during CRRT, due to its beneficial effects on MAP and cardiac output.  
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APPENDIX 

Table S1. Baseline characteristics of the cohort 

 

Variable  All patients ∆T° < -2°C ∆T° -2 to 0°C ∆T° ≥ 0°C P value 

 N=42 N=16 N=12 N=14  

Age, years 68 [58–76] 70 [64–82] 73 [61–78] 58 [49–68] 0.02 

Sex (male), N (%) 26 (62%) 11 (69%) 7 (58%) 8 (57%) 0.78 

Body mass index, kg.m-2  26 [22–31] 25 [21–28] 27 [24–32] 26 [21–30] 0.47 

Body weight at inclusion, kg 74 [69–86] 74 [66–80] 75 [71–84] 72 [68–89] 0.71 

SAPS-2 score 64 [49–76] 66 [60–81] 52 [46–72] 68 [56–76] 0.35 

SOFA score 12 [8–15] 12 [8–14] 10 [8–12] 14 [11–16] 0.12 

Non cardiovascular SOFA 8 [5–11] 8 [4–11] 6 [5–8] 10 [7–12] 0.12 

Non-renal SOFA score 9 [6–12] 9 [3–11] 7 [6–8] 12 [9–12] 0.05 

Medical admission context, N (%) 42 (100%) 16 (100%) 12 (100%) 14 (100%) NA 

Comorbidities      

Diabetes, N (%) 12 (29%) 4 (25%) 4 (33%) 4 (29%) 0.91 

Chronic respiratory disease, N (%) 4 (10%) 0 (0%) 3 (25%) 1 (7%) 0.06 

Chronic heart failure, N (%) 10 (24%) 3 (19%) 5 (42%) 2 (14%) 0.26 

Coronary artery disease, N (%) 12 (29%) 4 (25%) 4 (33%) 4 (29%) 0.91 

Cirrhosis, N (%) 6 (14%) 4 (25%) 2 (17%) 0 (0%) 0.15 

Acute circulatory failure mechanism     0.05 

Cardiogenic shock, N (%) 8 (19%) 1 (6%) 5 (42%) 2 (14%)  

Septic shock, N (%) 22 (52%) 9 (56%) 3 (25%) 10 (71%)  

Vasoplegic non-septic shock, N (%) 8 (19%) 3 (19%) 4 (33%) 1 (7%)  

Post-cardiac arrest syndrome, N (%) 4 (10%) 3 (19%) 0 (0%) 1 (7%)  

Sepsis, N (%) 33 (79%) 14 (88%) 6 (50%) 13 (93%) 0.03 

Septic shock, N (%) 24 (57%) 11 (69%) 3 (25%) 10 (71%) 0.04 

Invasive mechanical ventilation, N (%) 35 (83%) 13 (81%) 8 (67%) 14 (100%) 0.06 

RASS score, N (%) -5 [-5–-4] -5 [-5–-1] -5 [-5–0] -5 [-5–-5] 0.04 

Neuromuscular blockade agonist, N (%)  18 (43%) 4 (25%) 4 (33%) 10 (71%) 0.03 

Data is median [interquartile range] or count (percentage) 

Longitudinal groups of temperature gradient categories (columns 2 to 4) were defined as fraction of time spent <-2°C 

or ≥0°C over 30% of total follow-up. 

Comparison between groups were performed using Fisher’s test or the Kruskal-Wallis test 

∆T°: temperature gradient; RASS: Richmond analgesia and sedation scale; SAPS-2: simplified acute physiology score 2; 

SOFA: sequential organ failure assessment 
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Table S2. CRRT settings at baseline 

 

Variable  All patients ∆T° < -2°C ∆T° -2 to 0°C ∆T° ≥ 0°C P value 

 N=42 N=16 N=12 N=14  

Delay between ICU admission and CRRT 

start, h 
1 [0–3] 1 [0–3] 2 [0–3] 1 [0–4] 0.78 

Delay between CRRT start and inclusion, h 6 [1–15] 8 [3–14] 5 [1–16] 4 [1–17] 0.92 

Fluid balance at inclusion, kg 3 [0–8] 4 [0–8] 2 [-3–4] 4 [1–10] 0.14 

CRRT technique     0.77 

CVVH, N (%) 39 (93%) 14 (88%) 12 (100%) 13 (93%)  

CVVHD, N (%) 3 (7%) 2 (12%) 0 (0%) 1 (7%)  

CRRT anticoagulation technique     0.77 

Regional citrate anticoagulation, N 

(%) 
3 (7%) 2 (12%) 0 (0%) 1 (7%)  

Systemic heparin, N (%) 39 (93%) 14 (88%) 12 (100%) 13 (93%)  

CRRT settings      

Blood flow, ml.min-1  250 [200–250] 250 [200–250] 250 [250–250] 250 [200–288] 0.66 

Effluent flow rate, ml.kg-1.h-1 29 [26–32] 29 [24–32] 29 [26–31] 29 [27–34] 0.74 

Net ultrafiltration flow rate, ml.h-1 0 [0–200] 44 [0–300] 50 [0–162] 0 [0–188] 0.78 

Net ultrafiltration flow rate, ml.h-1.kg-

1 
0 [0–2.9] 0.7 [0–4.5] 0.6 [0–2.9] 0 [0–2.7] 0.83 

Data is median [interquartile range] or count (percentage) 

Longitudinal groups of temperature gradient categories (columns) were defined as fraction of time spent <-2°C or ≥0°C 

over 30% of total follow-up. 

Comparison between groups were performed using Fisher’s test or the Kruskal-Wallis test 

CVVHD: continuous veno-venous hemodialysis; CVVH: continuous veno-venous hemofiltration; CRRT: continuous renal 

replacement therapy; ∆T°: temperature gradient; ICU: intensive care unit 
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Table S3. Hemodynamic parameters at baseline 

 

Variable  All patients ∆T° < -2°C ∆T° -2 to 0°C ∆T° ≥ 0°C P value 

 N=42 N=16 N=12 N=14  

Duration of follow-up, h 119 [57–143] 140 [23–145] 69 [43–108] 131 [79–144] 0.15 

Mean arterial pressure, mmHg  70 [62–75] 71 [65–75] 68 [64–76] 70 [57–75] 0.81 

Systolic arterial pressure, mmHg   110 [97–124] 114 [103–121] 106 [102–134] 106 [80–122] 0.59 

Diastolic arterial pressure, mmHg   52 [45–58] 50 [44–56] 56 [48–61] 52 [46–56] 0.26 

Cardiac index, L.min-1.m-2  2.8 [2.1–3.3] 2.7 [2.4–3.3] 2.8 [2.1–3.4] 2.8 [2.1–3.2] 0.74 

Heart rate, min-1 96 [74–113] 82 [72–97] 95 [72–109] 107 [96–119] 0.03 

Stroke volume index, ml.m-2  29 [24–38] 32 [25–45] 26 [22–41] 27 [20–33] 0.23 

Preload dependent status, N (%) 22 (52%) 9 (56%) 4 (33%) 9 (64%) 0.30 

Central venous pressure, mmHg  8 [6–10] 10 [5–10] 8 [7–9] 8 [6–10] 0.97 

Extravascular lung water index, ml.kg-1  11 [8.1–13.7] 10.4 [9–13.7] 13.3 [10.1–14.8] 11.5 [7.5–13] 0.59 

Pulmonary vascular permeability index  2.2 [1.9–3] 2.2 [1.7–2.6] 2.4 [1.9–2.8] 2.4 [1.9–3.3] 0.33 

Global end-diastolic volume index, ml.m-2 664 [593–843] 765 [683–932] 732 [567–950] 597 [538–622] <0.01 

Norepinephrine administration, N (%) 40 (95%) 15 (94%) 11 (92%) 14 (100%) 0.74 

Norepinephrine dose (tartrate), 

µg.kg-1.min-1 
0.54 [0.21–1.41] 0.56 [0.15–1.09] 0.3 [0.2–1.12] 0.76 [0.34–2.62] 0.35 

Arterial lactate, mmol.L-1 2.9 [1.5–5] 3 [1.9–4.7] 1.9 [1.4–3.3] 3.4 [1.6–6.8] 0.60 

Data is median [interquartile range] or count (percentage) 

Longitudinal groups of temperature gradient categories (columns) were defined as fraction of time spent <-2°C or ≥0°C over 

30% of total follow-up. 

Comparison between groups were performed using Fisher’s test or the Kruskal-Wallis test 

∆T°: temperature gradient 
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Table S4. Temperature gradient and core temperature at baseline 

 

Variable  All patients ∆T° < -2°C ∆T° -2 to 0°C ∆T° ≥ 0°C P value 

 N=42 N=16 N=12 N=14  

Core temperature      

Before CRRT start, °C 36.7 [36.3–37.4] 36.6 [36–37.1] 37 [36.5–37.5] 36.9 [36.4–37.3] 0.43 

At inclusion, °C  36.5 [35.8–36.9] 35.8 [35.6–36.3] 36.7 [36–36.8] 37 [36.3–37.4] 0.01 

Core temperature category     0.06 

< 36°C, N (%) 15 (36%) 9 (56%) 3 (25%) 3 (21%)  

36 to 37.5°C, N (%) 24 (57%) 7 (44%) 9 (75%) 8 (57%)  

>37.5°C, N (%) 3 (7%) 0 (0%) 0 (0%) 3 (21%)  

Temperature gradient at inclusion, °C -1.3 [-2.9–-0.5] -2.9 [-3.3–-1.2] -1.3 [-2–-1.1] -0.6 [-2–0.4] <0.01 

Temperature gradient category at inclusion     <0.01 

< -2°C, N (%) 15 (36%) 9 (56%) 2 (17%) 4 (29%)  

-2 to 0°C, N (%) 20 (48%) 7 (44%) 10 (83%) 3 (21%)  

≥ 0°C, N (%) 7 (17%) 0 (0%) 0 (0%) 7 (50%)  

Core temperature during follow-up      

Fraction of time between 36 and 

37.5°C 
0.78 [0.61–0.9] 0.74 [0.48–0.79] 0.82 [0.78–1] 0.73 [0.58–0.9] 0.07 

Fraction of time below 36°C 0.08 [0–0.22] 0.25 [0.17–0.52] 0.08 [0–0.13] 0 [0–0.06] <0.01 

Fraction of time above 37.5°C 0.01 [0–0.13] 0 [0–0.01] 0 [0–0.08] 0.17 [0.09–0.41] <0.01 

Temperature gradient during follow-up      

Fraction of time with gradient ≥ 0°C 0.05 [0–0.48] 0 [0–0] 0.01 [0–0.13] 0.57 [0.5–0.8] <0.01 

Fraction of time with gradient 

between -2°C and 0°C 
0.29 [0.12–0.58] 0.13 [0.04–0.29] 0.74 [0.68–0.82] 0.18 [0.12–0.4] <0.01 

Fraction of time with gradient < -2°C 0.24 [0.03–0.65] 0.77 [0.61–0.94] 0.09 [0–0.14] 0.08 [0–0.21] <0.01 

Data is median [interquartile range] or count (percentage) 

Longitudinal groups of temperature gradient categories (columns) were defined as fraction of time spent <-2°C or ≥0°C 

over 30% of total follow-up. 

Comparison between groups were performed using Fisher’s test or the Kruskal-Wallis test 

CRRT: continuous renal replacement therapy ; ∆T°: temperature gradient 
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Table S5. Clinical outcomes 

 

Variable  All paJents ∆T° < -2°C ∆T° -2 to 0°C ∆T° ≥ 0°C P value 

 N=42 N=16 N=12 N=14  

Total number of HIRRT episodes 214 92 54 68 0.03 

Number of HIRRT episodes per pa/ent 4 [3–8] 6 [3–10] 4 [3–4] 6 [3–8] 0.38 

Death at day-90, N (%) 26 (62%) 13 (81%) 8 (67%) 5 (36%) 0.04 

RRT dependence at day-90, N (%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) >0.99 

RRT-free days at day-90 0 [0–74] 0 [0–0] 0 [0–52] 63 [0–80] 0.06 

Data is median [interquar/le range] or count (percentage) 

Longitudinal groups of temperature gradient categories (columns) were defined as fraction of time spent <-2°C or ≥0°C 

over 30% of total follow-up. 

Comparison between groups were performed using Fisher’s test or the Kruskal-Wallis test 

∆T°: temperature gradient ; HIRRT: hemodynamic instability related to RRT; RRT: renal replacement therapy 
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Table S6. Association of hemodynamics and suspected confounders with longitudinal HIRRT risk (univariate 

analysis) 

 
 HIRRT risk in the following 4h 

Variables (4-hourly observations) 
Odd ratio 

[95% c.i.] 
P value 

Mean arterial pressure, per 10 mmHg increase*  <0.01 

First degree 0.09 [0.02–0.43]  

Second degree 1.01 [1.00–1.02]  

Cardiac index, per 0.1 L.min-1.m-2 increase 0.93 [0.91–0.96] <0.01 

Heart rate, per 10 min-1 increase*  <0.01 

First degree 0.18 [0.09–0.35]  

Second degree 1.01 [1.01–1.01]  

Stroke volume index, per 10 ml.m-2 increase 0.68 [0.54–0.86] <0.01 

Relative change in CCI during postural maneuver, per 1% increase 1.02 [1.01–1.04] 0.01 

Preload dependent status (reference is preload independence)|| 1.60 [1.11–2.29] 0.01 

Norepinephrine dose (tartrate), per 0.1 µg.kg-1.min-1 increase 1.00 [0.98–1.02] 0.50 

Temperature gradient, per 0.1°C increase 0.98 [0.97–0.99] <0.01 

Weighted temperature gradient, per 0.1°C increase 0.97 [0.95–0.99] <0.01 

Pre-treatment confounders    

Age, per 1 year increase 1.01 [0.99–1.03] 0.30 

Sepsis (reference is no sepsis) 0.78 [0.46–1.33] 0.37 

Invasive mechanical ventilation (reference is no invasive mechanical 

ventilation) 
0.74 [0.39–1.41] 0.37 

RASS score ≤ -4 (reference is > -4) 0.70 [0.41–1.22] 0.23 

Core temperature, per 1°C increase 1.00 [1.00–1.00]   0.01 

CRRT modality is CVVHD (CVVH is the reference) 0.58 [0.31–1.11] 0.09 

Post-treatment confounders   

Non-cardiovascular SOFA score, per 1 point increase 0.94 [0.89–0.98] 0.01 

Delay since last HIRRT < 8h (reference is ≥ 8h) 1.55 [1.07–2.24] 0.02 

Daily lactate, per 1 mmol.L-1 increase 2.27 [1.09–4.72] 0.04 

*: quadratic factor in the model 
||: defined as a CCI increase > 10% during the postural maneuver 

Mixed effects generalized linear regression models were run on 10 imputed datasets (N=970 observations in each 

dataset, due to the absence of follow-up in the next 4h regarding HIRRT at that time point), with the variable of 

interest as the fixed effect, HIRRT as the dependent variable, visit number as the random slope nested in a random 

intercept corresponding to the patient identification number. Variables were scaled and centered prior to 

regression (norepinephrine required additional transformation using the Box-Cox method due to leftward 

skewness). Models’ goodness-of-fit were checked using Hartig et al. method (package DHARMa). Fixed effects were 

then pooled using Rubin’s rule and descaled to the original hemodynamic parameter scale. Weighting of 

temperature gradient was performed using the CBPS method to adjust for the effects of pre-treatment confounders 

on temperature gradient. P values were bootstrapped over 500 replicate datasets. 

95% c.i.: 95% confidence interval; CCI: continuous cardiac index by pulse contour analysis; HIRRT: hemodynamic 

instability related to renal replacement therapy; RASS: Richmond’s analgesia and sedation scale; SOFA= sepsis-

related organ failure assessment. 
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Supplemental figure 1. CorrelaJon between core temperature and temperature gradient, and 

esJmated weights applied to temperature gradient as a funcJon of pre-treatment cofounders 

 

The figure shows the correla/on between core temperatures and temperature gradients in panel A, 

and the weight values applied to temperature gradient in models to correct for the confounding effect 

of pre-treatment cofounders (core temperature, age, sepsis, RASS, invasive mechanical ven/la/on, 

CRRT modality). Data points are also categorized based on the temperature gradient category (< -2°C 

in red, between -2°C and 0°C in green, and ≥0°C in blue). Weights were determined using the covariate 

balancing propensity score methods for con/nuous treatments (Fong et al., 2018). The figure shows 

that in an observa/on with hyperthermia (> 37.5°C), a higher weigh will be given to observa/ons with 

a gradient below 0°C. CRRT: con/nuous renal replacement therapy; RASS: Richmond analgesia and 

seda/on scale. 
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Supplemental figure 2. Directed acyclic graph 

 

The figure shows the hypothesized causal rela/on between temperature gradient set on the CRRT 

monitor and the HIRRT risk, mediated through mean arterial pressure and cardiac index. In media/on 

models (** and ***), both mediators acted as the main mediator, while the other acted as the alternate 

mediator. Preload (*) was also included given the theore/cal impact of temperature gradient on venous 

vasomotor tone and venous return. Core temperature and other covariates acted as a poten/al pre-

treatment confounder (in red), while norepinephrine dose, non-cardiovascular SOFA score and arterial 

lactate concentra/on acted as post-treatment confounders, interac/ng with both the outcome and 

mediators (in blue). Interac/ons between mediators and treatment were also accounted for. 

SOFA: sepsis-related organ failure assessment  
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Supplemental figure 3. Core temperature, CRRT set temperature and temperature gradient over Jme 

 

The figure shows the median value and first and third quar/le value of core temperature (A), CRRT set 

temperature (B) and temperature gradient (C) over /me in the cohort, categorized by the frac/on of 

/me spent in a temperature gradient category (>30% of /me with temperature gradient ≥ 0°C in blue, 

>30% of /me with temperature gradient < -2°C in red, the remaining observa/ons in grey). Below the 

panels are the number of pa/ents at risk in each category over /me. In each panel, the P value 

examines the associa/on of the interac/on exis/ng between elapsed /me since inclusion (categorical) 

and the gradient category with the variable of interest, using a linear mixed effects model, with the 

pa/ent iden/fica/on number as the random intercept and the elapsed /me as a random effect 

(con/nuous). An offset for the core temperature measured before inclusion was also included. CRRT: 

con/nuous renal replacement therapy. 
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Supplemental figure 4. Core temperature, CRRT set temperature and temperature gradient over Jme 

in the 42 paJents of the cohort. 

 

The figure shows the longitudinal evolu/on of core temperature (in red), set temperature (in black), 

and the gradient (the difference between the two la{er) in pa/ents included in the study. Posi/ve 

gradients are represented with a blue shade, and the frac/on (%) of /me spent with a gradient >0°C is 

given for each individual. CRRT: con/nuous renal replacement therapy. 
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Supplemental figure 5. Observed hemodynamic values based on the temperature gradient and core 

temperature categories. 

 

The figure shows the observed median value of mean arterial pressure (A), cardiac index (B), heart rate 

(C), stroke volume index (D), rela/ve change in CCI during a postural maneuver (E) and norepinephrine 

dose (F) as a func/on of the core temperature category (x axis) and the temperature gradient (< -2°C 

in red, between -2 and 0°C in grey, and ≥ 0°C in blue) during longitudinal follow-up (4-hourly 

observa/ons, N=1012).  

CCI: con/nuous cardiac index by pulse contour analysis. 
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Supplemental figure 6. AssociaJon of temperature gradient with longitudinal HIRRT risk during 

follow-up (unweighted analysis in observaJons with normal core temperature) 

 

The figure shows the predicted risk of HIRRT associated with temperature gradient during follow-up in 

observa/ons with a normal core temperature (P=0.02). Gradient categories are also represented. The 

grey shade represents the standard devia/on of the predic/on. Predic/on was performed using a 

generalized linear regression mixed effects model, with HIRRT as the dependent variable, temperature 

gradient as the explanatory variable, and applied to 10 imputed datasets. Models’ random effects were 

a random slope of visit number nested in a random intercept corresponding to the pa/ent iden/fica/on 

number. Model coefficients were not weighted for core temperature. Model coefficients were then 

pooled and applied to a synthe/c dataset with temperature gradient varying between the lowest and 

highest value observed in the cohort. For each imputed datasets, the C-sta/s/cs (and its 95% 

confidence interval, Delong’s method) and the Hosmer-Lemeshow goodness-of-fit test was performed, 

and their results pooled. Final model’s C-sta/s/cs: 0.56 [95% confidence interval: 0.53–0.59], Hosmer-

Lemeshow goodness-of-fit test: P=0.01. 
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Supplemental figure 7. MediaJon analysis in 4-hourly observaJons using a temperature gradient cut-

off value ≥ -1°C o < -1°C  

 

 

 

The methodology follows exactly that presented in the main analysis, except for the modifica/on of 

the cutoff value used to define treatment (in blue) and controls (in red), modified to -1°C. 
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Supplemental figure 8. MediaJon analysis in 4-hourly observaJons with or without preload 

dependence. 

 

Given the fact that a poten/al interac/on existed between preload dependence and cardiac index in 

HIRRT risk predic/on, a sensi/vity analysis was performed in the subgroup of 4-hourly observa/ons 

with preload dependence (N=360) and those without (N=617, 35 imputed missing observa/ons in the 

original datasets). Preload dependence was defined as rela/ve change in con/nuous cardiac index > 

10% during a postural maneuver performed at /me of observa/on. The methodology follows exactly 

that presented in the main analysis. 
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Supplemental figure 9. MediaJon analysis in 4-hourly observaJons with normothermia. 

 

The figure shows the sensi/vity analysis performed in the subset of observa/ons with normothermia 

(N=753, core temperature between 36°C and 37.5°C). The methodology used follows exactly that 

presented in the main analysis. 
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Le Serment d'Hippocrate 

 

 

 

Je promets et je jure d'être fidèle aux lois de l’honneur et de la probité dans l'exercice 

de la Médecine. Je respecterai toutes les personnes, leur autonomie et leur volonté, 

sans discrimination. 

 

J'interviendrai pour les protéger si elles sont vulnérables ou menacées dans leur 

intégrité ou leur dignité. Même sous la contrainte, je ne ferai pas usage de mes 

connaissances contre les lois de l'humanité. 

 

J'informerai les patients des décisions envisagées, de leurs raisons et de leurs 

conséquences. Je ne tromperai jamais leur confiance. 

 

Je donnerai mes soins à l'indigent et je n'exigerai pas un salaire au-dessus de mon 

travail. Admis dans l'intimité des personnes, je tairai les secrets qui me seront confiés 

et ma conduite ne servira pas à corrompre les mœurs. 

 

Je ferai tout pour soulager les souffrances. Je ne prolongerai pas abusivement la vie 

ni ne provoquerai délibérément la mort. 

 

Je préserverai l'indépendance nécessaire et je n'entreprendrai rien qui dépasse mes 

compétences.  Je perfectionnerai mes connaissances pour assurer au mieux ma 

mission. 

Que les hommes m'accordent leur estime si je suis fidèle à mes promesses. Que je 

sois couvert d'opprobre et méprisé si j'y manque. 
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Effet du gradient de température sur le risque d’instabilité hémodynamique 
pendant l’épuration extra rénale continue en réanimation : une analyse de 

médiation causale. 

FRAIRE Lorna - Thèse Médecine spécialisée clinique : Lyon 2025 ; n°39 

Introduction : Abaisser la température du circuit extracorporel (T°CRRT) en dessous de la température centrale 
(T°core) lors de l’épuration extra rénale continue (EERc) pourrait réduire l'instabilité hémodynamique (HIRRT pour 
hemodynamic instability related to renal replacement therapy) en modifiant le débit cardiaque et le tonus 
vasomoteur. Cette étude visait à évaluer la relation causale entre le gradient de température (∆T°) existant entre 
T°core et T°CRRT et le risque longitudinal de HIRRT. Méthodes : Cette analyse ancillaire d'une étude prospective 
monocentrique (NCT03139123) a inclus des patients présentant une insuffisance rénale aiguë de stade 3 (KDIGO), 
sous EERc depuis moins de 24 heures et bénéficiant d'une surveillance continue de l'index cardiaque. T°CRRT et 
T°core étaient mesurées toutes les 4 heures entre l’inclusion et le jour 7. Le ∆T° (T°core – T°CRRT) a été calculé, et 
les paramètres hémodynamiques ainsi que les épisodes de HIRRT (définis par une pression artérielle moyenne < 65 
mmHg nécessitant une intervention thérapeutique) ont été recueillis. Une analyse de médiation a évalué l’effet de 
∆T° sur le risque longitudinal de HIRRT via l’index cardiaque et la pression artérielle moyenne. Résultats : 42 
patients ont été inclus (âge 68 [58–76] ans, SOFA 12 [8–15], 33 (79 %) atteints de sepsis) et suivis pendant 119 
[57–143] heures (N=1012 observations). Une augmentation de ∆T° était significativement associée à une 
augmentation de la fréquence cardiaque, de l’index cardiaque et de la pression artérielle moyenne, ainsi qu'à une 
diminution de la dose de noradrénaline et du risque de HIRRT en analyse univariée (0,97 [0,95–0,99] par 
augmentation de 0,1°C, P<0,01). L’analyse de médiation causale a montré qu’un ∆T° ≥ 0°C réduisait 
significativement le risque de HIRRT par l’amélioration de la pression artérielle moyenne et de l’index cardiaque (effet 
médié : 55 % et 38 % de l’effet total, respectivement). Conclusions : Lors de l’EERc, une augmentation de ∆T° 
réduit le risque de d’instabilité hémodynamique, en améliorant la pression artérielle moyenne et le débit cardiaque. 

 

Effect of temperature gradient on hemodynamic instability risk during continuous renal replacement 

therapy: a causal mediation analysis 

 

Introduction: Lowering extracorporeal circuit temperature (T°CRRT) below core temperature (T°core) during 
continuous renal replacement therapy (CRRT) may decrease hemodynamic instability (HIRRT) by affecting cardiac 
output and vasomotor tone. This study aimed to evaluate the causal relationship between core-to-CRRT temperature 
gradient and HIRRT longitudinal risk. Methods: This ancillary analysis of a prospective, single-center study 
(NCT03139123) included patients with stage 3 acute kidney injury, who received CRRT for <24h and had continuous 
cardiac index monitoring. T°CRRT and T°core were measure every 4-hourly between inclusion and day 7. Temperature 
gradient (T°core - T°CRRT) was calculated and, hemodynamics parameters and HIRRT (defined as a mean arterial 
pressure < 65 mmHg requiring therapeutic intervention) were collected. Mediation analysis evaluated the effect of 
∆T° on HIRRT longitudinal risk during follow-up, mediated through cardiac index and mean arterial pressure. 
Results: 42 patients were enrolled in this ancillary analysis (age 68 [58–76], SOFA 12 [8–15] and 33 (79%) had 
sepsis), and were followed over 119 [57–143] hours (N=1012 observations). Increasing ∆T° was significantly 
associated with higher heart rate, CI and MAP, and lower norepinephrine dose, and reduced HIRRT risk in univariate 
analysis (0.97 [0.95–0.99] per 0.1°C increase, P<0.01). Causal mediation analysis showed that ∆T° ≥ 0°C 
significantly decreased HIRRT risk through improved MAP and CI (mediated: 55% and 38% of the total effect, 
respectively). Conclusions: During CRRT, increasing ∆T° between led to a lower risk of HIRRT, through an 
improvement in both MAP and CI.  
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