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ABSTRACT

Introduction: Lowering extracorporeal circuit temperature (T°crrt) below core
temperature (T°core) during continuous renal replacement therapy (CRRT) may
decrease hemodynamic instability (HIRRT) by affecting cardiac output (CO) and
vasomotor tone. This study aimed to evaluate the causal relationship between core-to-
CRRT temperature gradient and HIRRT longitudinal risk.

Methods: This ancillary analysis of a prospective, single-center study
(NCT03139123) included patients with stage 3 acute kidney injury, who received CRRT
for <24h and had continuous cardiac index monitoring. T°crrt, T°core and
hemodynamics parameters were collected 4-hourly between inclusion and day 7.
Temperature gradient (AT®) corresponded to T°core — T°crrT. HIRRT (defined as a mean
arterial pressure < 65 mmHg requiring therapeutic intervention) were reported hourly.
A mediation analysis evaluated the effect of AT® on HIRRT longitudinal risk during

follow-up, mediated through cardiac output and mean arterial pressure.

Results: 42 patients were enrolled in this ancillary analysis (age 68 [58-76],
SOFA 12 [8-15] and 33 (79%) with sepsis), and were followed over 119 [57-143] hours
(N=1012 observations). Increasing AT® was significantly associated with higher heart
rate, CO and mean arterial pressure (MAP), and lower norepinephrine dose, and
reduced HIRRT risk in univariate analysis (0.97 [0.95-0.99] per 0.1°C increase,
P<0.01). Causal mediation showed that AT® 2 0°C significantly decreased HIRRT risk
through improved MAP and CO (mediated: 55% and 38% of the total effect,

respectively).

Conclusions: During CRRT, increasing AT® led to a lower risk of HIRRT, through
an improvement in both MAP and CO.
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INTRODUCTION

Hemodynamic instability related to renal replacement therapy (HIRRT) is a
complication observed with all renal replacement therapy (RRT) techniques commonly
used in the intensive care unit (ICU). It is associated with higher mortality, uncontrolled
fluid balance and poorer renal recovery. HIRRT is multifactorial and its onset may be
consequential to the underlying clinical condition’s evolution or inadequate RRT
settings, which may alter cardiac output (CO) or decrease systemic vasomotor tone,
uncompensated by physiological feedback (1).

Most often, fluid removal by net ultrafiltration is identified as being the sole factor
(and RRT setting) responsible for an episode of HIRRT, but other mechanisms may
also play a role (2). Continuous RRT (CRRT) is a strong contributor to body heat loss
through heat dissipation in the extracorporeal circuit and has led to the use of
extracorporeal heating devices to compensate thermal loss. On the other hand,
excessive heat transfer to the patient may alter vasomotor tone (arterial but also
venous, with an unknown effect on venous return and cardiac preload) and cardiac
output (through an increase in heart rate), which may potentially generate
macrocirculatory compromise, hemodynamic instability and an increased risk of
HIRRT.

Cooling the extracorporeal circuit during RRT may hence theoretically improve
hemodynamic stability in critically ill patients, but its effects during CRRT remain
insufficiently studied. During intermittent hemodialysis, Edrees et al. (3) observed a
significant reduction in hypotensive episodes when the dialysate temperature was set
at 35°C compared to 37°C. In patients undergoing CRRT, Robert et al. (4) showed that
setting the replacement fluid’s temperature at 36°C over 6h increased mean arterial
pressure (MAP) while allowing for a decrease in catecholamine infusion dosage but
did not account for the temperature gradient existing between body core temperature
and the extracorporeal circuit.

We hypothesized that setting the extracorporeal circuit temperature (T°crrr)
below core temperature (T°core) during CRRT may decrease HIRRT risk, through the
effects of relative heat loss on cardiac output and vasomotor tone. The primary
objective of the study was to evaluate the causal relationship existing between core-
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to-CRRT temperature gradient and HIRRT longitudinal risk, mediated by MAP and
cardiac output, in patients treated with CRRT.

METHODS
Design

We performed an ancillary analysis of the PRELOAD CRRT study (5)
(NCT03139123), a prospective, observational, single-center study conducted between
May 2017 and September 2020 in the medical ICU of the Croix Rousse university
hospital in Lyon, France. The study was approved by an ethics committee (CPP lle de
France 1V, ID-RCB 2017-A00483-50). The PRELOAD CRRT study aimed to describe
the prevalence of preload-dependent HIRRT during CRRT.

Study population

Eligible patients were adults with Kidney Disease — Improving Global Outcome
(KDIGO) stage 3 acute kidney injury undergoing CRRT for less than 24 hours and
monitored by means of a calibrated continuous cardiac output monitoring device.
Exclusion criteria were impossibility or contraindication to perform postural maneuvers
(lower limb amputation, inferior vena cava obstruction, pregnancy, intracranial
hypertension), decision to withhold treatment, lack of affiliation to social security, legal
protective measures, and previous participation in the study. Patients were followed for
a maximum of 7 days from the time of inclusion, or until death, or until the study
procedures could no longer be performed (due to discontinuation of CRRT or CO

monitoring).
Temperature monitoring and management

Temperatures were collected 4-hourly during the observation period. T°core was
continuously monitored at the tip of the PICCO® arterial catheter (Pulsion Medical,
Feldkirch, Germany) positioned in the femoral artery, and automatically reported in
electronic ICU charts. 4-hourly T°core was further categorized into three classes:
hypothermia (< 36°C), normothermia (36 to 37.5°C), and hyperthermia (> 37.5°C).

T°crrr corresponded to the temperature set on the CRRT monitor by the

treatment team and was collected every 4 hours. T°crrr Was adjustable by steps of
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(CC BY-NC-ND 4.0) FRAIRE



1°C between 35°C to 39°C on the monitors (Multifiltrate Pro, Fresenius Medical Care,

Germany). Effective extracorporeal circuit fluid temperatures were not measured.

Consequently, 4-hourly core-to-CRRT temperature gradient (AT®), defined as the
difference between T°core and T°crrt, wWas positive if T°core was superior to T°crrT
and negative if it was inferior to T°crrt. 4-houlry observations were further classified
based on AT® into three categories: 20°C resulting in heat loss, between -2 to 0°C
considered neutral heat transfer, and < —2°C indicating heat gain.

For descriptive reasons, we classified patients into 3 groups based on the
predominant, non-neutral, temperature gradient observed during the observation
period: AT® < —-2°C group if more than 30% of the patient’s 4-hourly observations had
a AT®° <=2°C, AT® =20°C group if more than 30% of 4-hourly observations had a AT®
=0°C, and AT®° —=2°C to 0°C group if none of the 2 preceding conditions were met.

Temperature management and T°crrt Setting were not protocolized, with the limit
that the treating team targeted normothermia in all patients, using any available means,
including T°crrt modifications. Furthermore, in case of hypothermia, external warming
blankets could be used. Room temperatures were maintained within a controlled range
of 19°C to 24°C.

Participants follow up

The following data were collected prospectively in electronic case report forms
every 4 hours during follow-up: MAP, central venous pressure (CVP), heart rate (HR),
stroke volume index (SVI), cardiac index (Cl), preload dependence status, global end-
diastolic volume index, extravascular lung water index, pulmonary vascular
permeability index and systemic vascular resistance index. Indexed values were
normalized to body surface (Dubois’s formula), and norepinephrine dosage (as
tartrate) to ICU admission body weight.

Hemodynamics measurements

We monitored patients with acute circulatory failure with a calibrated continuous
cardiac output device using pulse-contour analysis (PiICCO® system, Pulsion Medical,
Feldkirch, Germany), with transpulmonary thermodilution (TPTD) calibration
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performed every 4 hours using three injections of normal saline performed on the

venous central line.

The assessment of preload dependence involved passive leg raising (PLR),
deemed positive if the continuous cardiac output (CCO) increased by more than 10%,
or Trendelenburg maneuvers, positive if CCO > 8%. High-quality hemodynamic
monitoring criteria included correct positioning at the phlebostatic level of all pressure
probes (CVP and MAP) and fast flush test verifications to maintain accurate pressure
readings.

Episodes of HIRRT, defined by MAP < 65 mmHg requiring therapeutic
intervention (fluid resuscitation, increase or introduction in norepinephrine, UFner
decrease or cessation), were also tracked and reported hourly throughout patient

follow-up.
CRRT settings

The clinician in charge determined the indication, CRRT modality, and settings in
accordance with international guidelines and unit protocols. CRRT was indicated for
patients with acute circulatory failure meeting the initiation criteria of the delayed
strategy of the AKIKI trial. CRRT modalities included continuous veno-venous
hemofiltration with heparin (CVVH-hep) or continuous veno-venous hemodialysis with
regional citrate anticoagulation (CVVHD CiCa) using Fresenius Medical systems.

CVVH-hep was the preferred technique for patients with indication for systemic
anticoagulation, acute liver failure, or any contraindications to citrate regional
anticoagulation (arterial lactate > 4 mmol/L, metformin intoxication), or based on

clinician preference.

CRRT monitors (with integrated heating systems) were the Fresenius Multifiltrate

Pro with an AV-1000S membrane (Fresenius Medical Care, Bad Homburg, Germany).
Replacement fluids were Hemosol BO (Baxter, Deerfield, IL, USA), or MultiBic KO
(Fresenius Medical Care, Bad Homburg Germany) for CVVH, and Ci-Ca Dialysate K2
(Fresenius Medical Care, Bad Homburg Germany) for CVVHD. CRRT effluent flow rate
was set at 20-25 ml.kg".h"!, using ICU admission body weight. Blood flow rate was set
to 200-300 ml.min" with CVVH, and to one twentieth (in ml.min"") of the dialysate flow
23
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rate (in ml.h-") for CVVHD with citrate regional anticoagulation, as per manufacturer

recommendations.
Statistics

No sample size calculation was performed for the ancillary study; sample size
calculation of the PRELOAD CRRT study is reported in the princeps publication.
Statistical analyses were preformed using the R software (version 4.1.3). A P value
under 0.05 was used to define statistical significance. Continuous data are reported

using median [interquartile range] and categorical data using count (percentage).

The analysis was performed on all included patients, including those whose
observation period did not reach day 7. Missing variables during follow-up were
imputed on 10 datasets by predictive mean matching for continuous variables and
logistic regression for categorical variables. Comparison between study groups of
continuous variables measured at inclusion was performed using the Kruskal-Wallis

test, and the Fisher test for categorical variables.

In all following models and regression analysis described below, mixed effects
were used with the visit number (continuous) as the random slope nested in a random
intercept corresponding to the patient identification number. Variables were scaled and
centered prior to regression; transformation was considered in case of significant
skewness. Also, because temperature gradient was correlated with T°core (coefficient
of correlation r 0.73, coefficient of determination R? 0.53) and potentially affected by
other covariates (age, sepsis, invasive mechanical ventilation, CRRT set blood flow
and sedation), an inverse probability of treatment weighting (IPTW) vector was
determined using the covariate balancing propensity score (CBPS, Supplemental

figure S1) to weight models’ coefficients.

Association of temperature gradient with longitudinal hemodynamics was first
performed using categorized AT® within each T°core categories in bivariate analysis
(including the evaluation of the interaction between the 2 explanatory variables). Then
the association of AT® with longitudinal hemodynamics was evaluated using AT® as a
continuous explanatory variable, with or without CBPS weighting. A sensitivity analysis
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was performed in the subset of observations with a normal T°core (between 36°C and
37.5°C).

Univariate association of demographics, severity of disease variables,
longitudinal hemodynamics and weighted temperature gradient with HIRRT
longitudinal risk (i.e. the risk of presenting an HIRRT in the following 4 hours of the
index observation) during follow-up were evaluated using generalized linear regression
models (using the binomial law), expressed using their odds ratio and corresponding
95% confidence interval. A sensitivity analysis of HIRRT risk prediction by temperature
gradient in observations with a normal T°core was also performed (without weighting).
This was followed by a multivariate regression analysis, using variables deemed
physiologically relevant to predict HIRRT risk. Multicollinearity and interactions were
systematically checked for. Quadratic factors applied to continuous predictors were
also tested. The models’ calibration and goodness-of-fit were evaluated using the C-

statistic and the Hosmer-Lemeshow test, respectively.
Multiple causal mediator analysis

Supplemental figure S2 shows the hypothesized causal relation existing
between AT® and HIRRT risk, mediated through mean arterial pressure and cardiac
output (including the effect of cardiac preload) by means of directed acyclic graph. The
figure also shows the pre-treatment confounders that were accounted for by the IPTW-
based CBPS, and the post-treatment confounders associated with HIRRT risk (non-
cardiovascular Sepsis-related Organ Failure Assessment [SOFA], arterial lactate

concentration and norepinephrine dose).

Then, a multiple causal mediator analysis was performed, using the methodology
developed by Imai and Yamamoto (6), which allows the conjunct assessment of
multiple mediators (i.e. cardiac output and MAP). Weighted temperature gradient
dichotomized as being = 0°C or < 0°C was used in the mediation models to predict
HIRRT risk in the following 4 hours. From these models, the average direct (ADE) and
average causal mediated (ACME) effects were quantified, with corresponding 95%
confidence intervals. Sensitivity analyses were performed using a AT® cutoff of —1°C,
in the subset of observations with normothermia, and based on the preload
dependence status. Robustness of mediation models to unidentified confounders (i.e.
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sequential ignorability) were evaluated by varying a correlation p parameter existing
between the residuals of the mediator and outcome regressions (7).

RESULTS
Cohort description

Forty-two patients were enrolled and were followed over 119 [57-143] hours, for
a total of 1012 observations. Median age was 68 [58-76], 62% patients were males,
the SOFA score was 12 [8— 15], and 52% were in septic shock at time of inclusion.
Patients’ characteristics at inclusion are reported in Supplemental table S1. The delay
between ICU admission and CRRT initiation was 1 [0-3] days. The CRRT settings at
inclusion were similar between the 3 groups and the principal CRRT modality was
CVVH-hep (Supplemental table S2). Baseline hemodynamics are shown in
Supplemental table S3.

Temperature course over time

Median AT® during follow-up was -1.3 [-2.4— +0.1] °C. At time of inclusion, T°core
were significantly different between the 3 groups of temperature gradient (P<0.01) and
most patients were in the [36 to 37,5°C] T°core group (Supplemental table S4).
Figure 1 shows the relationship between T°core, T°crrr, and temperature gradient.
Supplemental figure S3 shows T°core, T°crrT, and temperature gradient over the
observation period (Supplemental figure S4) for temperatures’ longitudinal course

over time in individuals
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Figure 1. Core temperature, CRRT set temperature and temperature gradient

40 4
o
384
O
o
) Temperature gradient, °C
=)
= @ <-2C
o 36
o O 0to-2°C
S
2 o =0C
©
n
344
324
32 34 36 38 40

Core temperature, °C

The figure shows the relationship between core temperature (measured on the PiCCO® device in
arterial femoral bloodstream) and the set temperature on the CRRT monitor. A negative temperature
gradient indicates that the core temperature was below the set temperature on the CRRT monitor. The
grey shade corresponds to temperature gradient between -2°C and 0°C. Data points are categorized
based on the temperature gradient value (<-2°Cin red, between -2 and 0°C in white, and =2 0°Cin blue).

The blue and red shades represent hypothermia (core temperature < 36°C) and hyperthermia (>37.5°C
of core temperature).
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Association of temperature gradient with hemodynamics

A AT® = 0°C in normothermic and hyperthermic T°core observations was
associated with higher MAP, cardiac output, heart rate and lower norepinephrine dose
(Figure 2, Supplemental figure S5 for observed values). When considered
continuously, a 1°C increase in AT® was associated with a significant increase in MAP,
heart rate and cardiac output but not with SVI or the relative change in CCI (continuous
cardiac index) during a postural maneuver (Table 1).

Table 1. Association of temperature gradient with hemodynamic parameters during follow-up.

Temperature gradient,
per 1°C increase

Unweighted Weighted Unweighted
Variables (4-hourly observations) All P value All Pvalue Normothermic P value
observations observations observations*
Mean arterial pressure, mmHg 1.05+0.33 <0.01 1.05+0.39 0.01 1.06+0.44 0.02
Cardiac index, L.mint.m 0.10+0.02 <0.01 0.07+0.02 0.00 0.09+0.03 <0.01
Heart rate, min 2.90+0.43 <0.01 2.2+0.45 0.00 2.53+0.58 <0.01
Stroke volume index, ml.m -0.1240.24 0.61 -0.131£0.28 0.55 -0.0840.33 0.76
Relative change in CCl during postural - 49,034 015 0244037 0.57 0.72£0.46 0.33
maneuver, %
Norepinephrine dose (tartrate), ugke” 041007 013 -008:0.02 001  -0.04£0.02 <0.01

.min’

Data is estimate * standard error

*: observations with a core temperature between 36 and 37.5°C

Mixed effects linear regression models were run on 10 imputed datasets (N=1012 observations in each dataset), with
temperature gradient as the fixed effect, the hemodynamic variable as the dependent variable, visit number as the random
slope nested in a random intercept corresponding to the patient identification number. Variables were scaled and centered
prior to regression (norepinephrine required additional transformation using the Box-Cox method due to leftward skewness).
Fixed effects were then pooled using Rubin’s rule and descaled to the original hemodynamic parameter scale. Models
included an offset corresponding to the baseline hemodynamic value at time of inclusion. Weighting was performed using
the CBPS method to adjust for the effect of pre-treatment confounders on temperature gradient. P values were bootstrapped
over 500 replicate datasets.

CCI: continuous cardiac index by pulse contour analysis
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Figure 2. Association of hemodynamic parameters with temperature gradient and core
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The figure shows the mean value of mean arterial pressure (A), cardiac index (B), heart rate (C), stroke
volume index (D), relative change in CCl during a postural maneuver (E) and norepinephrine dose (F)
based on the core temperature category (x axis) and the temperature gradient (< -2°C in red, between
-2 and 0°C in grey, and = 0°C in blue) during longitudinal follow-up (4-hourly observations). The
represented values are the marginal means (and associated standard error) determined from a mixed
effect model with the hemodynamic parameter as the dependent variable, temperature gradient
category and core temperature category as the explanatory variables (with an interaction term if
significant). Models’ random effects were a random slope of visit number nested in a random intercept
corresponding to the patient identification number. An offset was inserted in the model, corresponding
to the hemodynamic parameter value at baseline. Marginal means were determined in 10 imputed
datasets (N=1012 observations in each dataset), and pooled using Rubin’s method. Variables were
scaled prior to regression (with additional Box-Cox transformation for norepinephrine due to leftward
skewness) and descaled after. For all variables, interaction between the 2 explanatory variables was
checked. If significant, a post-hoc pairwise comparison was performed using Sidak’s method. P values
were bootstrapped over 500 replicate datasets. Collinearity between the 2 categorical variables was

eliminated using a variance inflation factor < 3.

#: P<0.05 between gradient category < -2°C (red) and >0°C (blue) in post-hoc pairwise analysis; &:

P<0.05 between gradient category -2°C to 0°C (grey) and >0°C (blue) in post-hoc pairwise analysis.

CCI: continuous cardiac index by pulse contour analysis.
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HIRRT risk and temperature gradient

The overall number of HIRRT episodes was 214, with a median number of
episodes per patient of 4 [3-8] during follow-up and was significantly more frequent in
the AT® < -2°C group (Supplemental table S5). In univariate analysis, HIRRT risk
significantly decreased with increasing temperature gradient (Figure 3), which was
also confirmed in normothermic observations (Supplemental figure S6). In
multivariate analysis (which included adjustments with the hemodynamic mediators),
AT® was not significantly associated with HIRRT longitudinal risk (Table 2, univariate
analyses presented in Supplemental table S6). Of note, no significant interaction
existed between MAP and cardiac output with HIRRT risk prediction.

31

(CC BY-NC-ND 4.0) FRAIRE



Figure 3. Association of temperature gradient with longitudinal HIRRT risk during follow-up.
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The figure shows the predicted risk of HIRRT associated with temperature gradient during follow-up
(P=0.01). Gradient categories are also represented. The grey shade represents the standard deviation
of the prediction. Prediction was performed using a generalized linear regression mixed effects model,
with HIRRT as the dependent variable, temperature gradient as the explanatory variable, and applied
to 10 imputed datasets. Models’ random effects were a random slope of visit number nested in a
random intercept corresponding to the patient identification number. Model was weighted for the core
temperature, using the CBPS method. Model coefficients were then pooled, and applied to a synthetic
dataset with temperature gradient varying between the lowest and highest value observed in the
cohort. For each imputed datasets, the C-statistics (and its 95% confidence interval, Delong’s method)
and the Hosmer-Lemeshow goodness-of-fit test was performed, and their results pooled. Final model’s
C-statistics: AUC: 0.59 [95% confidence interval: 0.57-0.61]; Hosmer-Lemeshow goodness-of-fit test:
P=0.02.
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Table 2. Multivariate analysis of variables associated with longitudinal HIRRT risk

HIRRT risk in the following 4h

Variables (4-hourly observations) ([)gic;’r:zl"; P value
Mean arterial pressure, per 10 mmHg increase* <0.01
First degree component 0.08 [0.02—0.38]
Second degree component 1.01 [1.00-1.02]
Cardiac index, per 0.1 L.mint.m?increase 0.99 [0.96-1.02] 5%
Relative change in CCl during postural maneuver, per 1% increase 1.15[1.06-1.24] 5
Relative change in CCl x cardiac index (interaction term) 1.00 [0.99-1.00] 5
Norepinephrine dose (tartrate), per 0.1 ug.kgt.minincrease -1 -
Temperature gradient, per 0.1°C increase (unweighted) 0.99 [0.98-1.01] 0.33
Post treatment confounders
Non-cardiovascular SOFA score, per 1 point increase 0.94 [0.90-0.98] <0.01
Delay since last HIRRT < 8h (reference is > 8h) -l -
Daily lactate, per 1 mmol. L! increase 2.40[1.23-4.69] 0.02

*: quadratic polynomial factor in the model; !': not retained in the model after backward stepwise selection; **:
significant interaction term between cardiac index and relative change in CCl (P<0.05).

The mixed effects generalized linear regression model were run on 10 imputed datasets (N=970 observations in each
dataset, due to the absence of follow-up in the next 4h regarding HIRRT at that time point), with the variables of
interest as the fixed effects, HIRRT as the dependent variable, visit number as the random slope nested in a random
intercept corresponding to the patient identification number. Variables inserted in the initial model were those with
a P value <0.20 in univariate analysis and deemed physiologically relevant to predict HIRRT risk. Variables were scaled
and centered prior to regression (norepinephrine required additional transformation using the Box-Cox method due
to leftward skewness). Backwards stepwise model selection was performed using Akaike’s information criterion.
Variables retained in the final model were those retained in at least 8 of the 10 imputed datasets (delay since last
HIRRT < 8h: 4 votes, norepinephrine dose: 4 votes). Fixed effects were then pooled using Rubin’s rule and descaled to
the original hemodynamic parameter scale. No weighting was applied. For each imputed datasets, the C-statistics (and
its 95% confidence interval, Delong’s method) and the Hosmer-Lemeshow goodness-of-fit test was performed, and
their results pooled. Final model’s C-statistics: 0.78 (95% confidence interval: 0.75-0.82), Hosmer-Lemeshow
goodness-of-fit test: P=0.35.

95% c.i: 95% confidence interval; CCl: continuous cardiac index by pulse contour analysis; HIRRT: hemodynamic
instability related to renal replacement therapy; SOFA= sepsis-related organ failure assessment.
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Causal mediation

Causal mediation analysis (Figure 4) showed that a AT® = 0°C significantly
decreased HIRRT risk, compared to a gradient < 0°C, mediated through both an
increase in MAP and cardiac output (proportion mediated: 55% and 38% of the total
effect of AT® on HIRRT risk, respectively). No significant direct (unmediated) effect of
AT® in HIRRT risk was identified. The analysis also showed that a higher MAP or
cardiac output would nevertheless lead to a decreased HIRRT risk in observations with
a AT®° < 0°C. Supplemental figures S7, S8 and S9 shows the results of the
prespecified sensitivity mediation analyses.
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Figure 4. Mediation analysis
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Weighted estimates for 4—hourly HIRRT risk

The figure shows the weighted estimates associated with a temperature gradient > 0° (in blue, treated), compared
to a temperature gradient < 0°C (in red, control), mediated by mean arterial pressure and cardiac index (ACME,
average causal mediated effect). The label “treatment” denotes the effect of the mediator (increasing MAP or Cl)

|Il

on HIRRT risk in observations with a gradient > 0°C (compared to < 0°C), while the label “control” indicates the
mediator’s effect (increasing MAP or Cl) on HIRRT risk if the gradient was < 0°C (compared to > 0°C). The figure
also shows the average direct (white dots) and total effect (sum of direct and indirect effects, in grey) of
temperature gradient on HIRRT longitudinal risk. The mediation model was designed using the methodology
developed by Imai and Yamamoto (2013), which allows the incorporation of alternative mediators when
performing multiple causal analysis. Hence, 2 models were designed: one with the mean arterial pressure as the
main mediator, and cardiac index as the alternative mediator. The second model did the opposite (cardiac index
as the main mediator and mean arterial pressure as the alternative mediator). An interaction term between the
treatment (temperature gradient) and the mediator (mean arterial pressure or cardiac index) was also included.
The mediation model incorporated the following post-treatment confounders: non cardiovascular SOFA,
norepinephrine dose, and daily arterial lactate concentration. The models were also weighted for pre-treatment
cofounders (weights determined using the CBPS method). Models were evaluated on 10 imputed datasets, and
their results pooled using Rubin’s rule. Nonparametric confidence intervals were bootstrapped over 600 replicate
datasets. Sensitivity analyses showed that the models were potentially susceptible to potential unaccounted-for

confounders (R** and R? = 0.1).
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DISCUSSION
Main results

In this prospective, observational, single center study of a cohort of patients
treated with CRRT and receiving advanced hemodynamic monitoring, we found that
an increasing AT® was significantly associated with higher cardiac output and MAP, as
well as with a lower HIRRT risk. A cooling temperature gradient (AT® 20°C, i.e. a CRRT
temperature setting equal or inferior to core temperature) significantly decreased
HIRRT risk, compared to a AT° < 0°C, mediated through both an increase in MAP and
cardiac output.

Relationship to previous studies

A cool dialysate strategy (usually 1 or 2°C below body temperature) is effective
in patients with end-stage kidney disease undergoing intermittent hemodialysis on
preventing intradialytic hypotension (8)(9). A systemic review and meta-analysis
conducted in 2016 supported the evidence of using a cool dialysate to enhance
hemodynamic tolerance during renal replacement therapy on chronic end-stage kidney
disease patients undergoing hemodialysis (10).

In the context of critical illness, Schortgen and al. demonstrated that cooling the
dialysate to lower body temperature reduced the risk of intradialytic hypotension in
critically ill patients undergoing intermittent hemodialysis, along with other
interventions(11). Edrees and al. also observed in a prospective randomized cross-
over pilot study of patients receiving sustained low-efficiency dialysis (SLED) that a
cool dialysate strategy led to significantly less HIRRT compared with dialysate
temperature of 37°C(3). Finally, during CRRT, Robert and al. reported that cooling the
replacement fluids to 36°C had no impact on body temperature but led to increased
MAP and decreased catecholamine infusion dosage, in line with our results, although
they reported no cardiac output data and could not conclude regarding HIRRT risk
prevention (4).

Although the effect of cooling on MAP and norepinephrine dosage has been
described before, the effect of a positive AT® gradient on heart rate and cardiac output,
and subsequent protective effect on HIRRT risk, are less documented. External cooling
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(applied to the peripheral/cutaneous envelope) is known to generate an increase in
cardiac output, energy expenditure and oxygen consumption (VO2) in exercising
healthy subjects, in relation with the increase in muscle mass activity (shivering) and
hypothalamus-driven neurohormonal activation aiming to maintain core temperature
constant. On the other hand, intensive therapeutic cooling of septic and febrile patients
with invasive mechanical ventilation has repeatedly shown a marked decrease in
cardiac output (12), VO and energy expenditure (13,14), especially in sedated,
paralyzed patients. Among those, Rokyta et al. observed that cooling patients
undergoing CRRT (using a replacement fluid temperature of 20°C), with septic shock
and mild hyperthermia (> 37.5°C) led to decreased VOg, cardiac output and heart rate
(15). These contrasting results, contrary to our observations (where cardiac output
increased), are related to the fact that these studies applied intensive cooling to
generate a drastic fall in body core temperature (by cooling the dialysate down to 20°C
or by turning off the heater, implying a AT® of 17°C or more). These conditions are in
stark contrast with the condition met by our population exposed to an absolute
difference between CRRT temperature and core temperature of a maximum of £2°C,
and in which the counteracting, core heating, response may not have been

antagonized.
Implications of study findings

Our results showed that during CRRT, increasing the AT® between T°core and
T°crrr led to a lower risk of HIRRT, through an improvement in both MAP and cardiac
output. These elements suggest that modifying the AT® by setting the T°crrt below
T°core might contribute to improve hemodynamic management and resuscitation.
Furthermore, setting T°crrt should probably account for the starting core temperature,
to limit inadequate or excessive hypothermia, or on the contrary deleterious over-
heating. Consequently, lower dialysate temperature might be a potential RRT-related
interventions to limit HIRRT by promoting vasoconstriction and cardiac output.

Hypothermia is known to contribute to coagulopathy in trauma patient (16), and
cooling patients undergoing CRRT could lead to the same complication by inhibiting
the initiation phase of thrombin generation and fibrinogen synthesis. However, a critical
temperature of 34°C was identified (17), below which platelet function is significantly

impaired, a temperature that was not observed in our cohort. Furthermore, if mild or
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relative hypothermia does alter coagulation, a potential benefit would be prolonged
filter lifespan, although we are unable to conclude regarding this matter.

Furthermore, exposure to cold temperatures affects cellular and molecular
defenses against pathogens in both humans and animals and causes secretion of
norepinephrine, cortisol and decreased lymphoproliferative responses because of
stress state induction. Indeed, hypothermia had significant effects on the immune
system by suppressing the innate immune function, reducing monocyte HLA-DR
expression and altering cytokine production and may be associated with increased
septic complications and mortality (18,19). Further studies are needed to explore these

potential adverse effects.
Strengths and limitations

Strengths of the study included the high number of HIRRT episodes collected that
represented many situations. Secondly, the prospective nature of the study minimized
the occurrence of missing values, which were nevertheless considered during
statistical analysis. Thirdly, we used advanced statistical methodology including causal
mediation analysis, multiple imputation and sensitivity analyses to stress the

robustness of our results.

This study has several limits that must be addressed. First, because of the single-
center study design, extrapolation of our results to other ICUs may be questionable.
Second, there is no standardized definition of HIRRT, and our chosen definition may
be debatable. Nevertheless, we used a straight-forward definition that can easily and
commonly be used in ICUs. Third, we did not report skin temperature (a potent
mediator of core temperature control) and effective CRRT circuit temperature, which
limits the physiological interpretation of the tested interventions. In addition, although
advanced hemodynamic monitoring was in place, we lack the data to estimate VO
and further describe the effect of AT® on energy expenditure and gas exchange.
However, given the significant effect of the AT® on heart rate and cardiac output, this
physiological response to mild cooling appears to be the more plausible explanation.
Finally, it would have been interesting to quantify the impact of AT® on microcirculatory

parameters such as mottles extension or capillary refilling time.
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CONCLUSIONS

In this single-center, prospective, causal mediation study, setting the CRRT
temperature lower than body temperature significantly reduced the risk of HIRRT
during CRRT, due to its beneficial effects on MAP and cardiac output.
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APPENDIX

Table S1. Baseline characteristics of the cohort

Variable All patients AT° < -2°C AT° -2 to 0°C AT® 2 0°C P value
N=42 N=16 N=12 N=14
Age, years 68 [58-76] 70 [64-82] 73 [61-78] 58 [49-68] 0.02
Sex (male), N (%) 26 (62%) 11 (69%) 7 (58%) 8 (57%) 0.78
Body mass index, kg.m™ 26 [22-31] 25 [21-28] 27 [24-32] 26 [21-30] 0.47
Body weight at inclusion, kg 74 [69-86] 74 [66—80] 75 [71-84] 72 [68-89] 0.71
SAPS-2 score 64 [49-76] 66 [60-81] 52 [46-72] 68 [56-76] 0.35
SOFA score 12 [8-15] 12 [8-14] 10 [8-12] 14 [11-16] 0.12
Non cardiovascular SOFA 8 [5-11] 8 [4-11] 6 [5-8] 10 [7-12] 0.12
Non-renal SOFA score 9[6-12] 9 [3-11] 7 [6-8] 12 [9-12] 0.05
Medical admission context, N (%) 42 (100%) 16 (100%) 12 (100%) 14 (100%) NA
Comorbidities
Diabetes, N (%) 12 (29%) 4 (25%) 4 (33%) 4 (29%) 0.91
Chronic respiratory disease, N (%) 4 (10%) 0 (0%) 3(25%) 1(7%) 0.06
Chronic heart failure, N (%) 10 (24%) 3(19%) 5(42%) 2 (14%) 0.26
Coronary artery disease, N (%) 12 (29%) 4 (25%) 4 (33%) 4 (29%) 0.91
Cirrhosis, N (%) 6 (14%) 4 (25%) 2 (17%) 0 (0%) 0.15
Acute circulatory failure mechanism 0.05
Cardiogenic shock, N (%) 8 (19%) 1(6%) 5(42%) 2 (14%)
Septic shock, N (%) 22 (52%) 9 (56%) 3(25%) 10 (71%)
Vasoplegic non-septic shock, N (%) 8 (19%) 3(19%) 4 (33%) 1(7%)
Post-cardiac arrest syndrome, N (%) 4 (10%) 3(19%) 0 (0%) 1(7%)
Sepsis, N (%) 33 (79%) 14 (88%) 6 (50%) 13 (93%) 0.03
Septic shock, N (%) 24 (57%) 11 (69%) 3(25%) 10 (71%) 0.04
Invasive mechanical ventilation, N (%) 35 (83%) 13 (81%) 8 (67%) 14 (100%) 0.06
RASS score, N (%) -5 [-5—-4] -5 [-5—-1] -5 [-5-0] -5 [-5--5] 0.04
Neuromuscular blockade agonist, N (%) 18 (43%) 4 (25%) 4 (33%) 10 (71%) 0.03

Data is median [interquartile range] or count (percentage)

Longitudinal groups of temperature gradient categories (columns 2 to 4) were defined as fraction of time spent <-2°C
or >0°C over 30% of total follow-up.

Comparison between groups were performed using Fisher’s test or the Kruskal-Wallis test

AT’: temperature gradient; RASS: Richmond analgesia and sedation scale; SAPS-2: simplified acute physiology score 2;
SOFA: sequential organ failure assessment
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Table S2. CRRT settings at baseline

Variable All patients AT° < -2°C AT° -2 to 0°C AT® 2 0°C P value
N=42 N=16 N=12 N=14
Delay between ICU admission and CRRT 1[0-3] 1[0-3] 2 [0-3] 1[0-4] 0.78
start, h
Delay between CRRT start and inclusion, h 6 [1-15] 8 [3-14] 5[1-16] 4[1-17] 0.92
Fluid balance at inclusion, kg 3[0-8] 4 [0-8] 2 [-3-4] 4[1-10] 0.14
CRRT technique 0.77
CVVH, N (%) 39 (93%) 14 (88%) 12 (100%) 13 (93%)
CVVHD, N (%) 3(7%) 2 (12%) 0 (0%) 1(7%)
CRRT anticoagulation technique 0.77
?;;glonal citrate anticoagulation, N 3 (7%) 2 (12%) 0 (0%) 1(7%)
0
Systemic heparin, N (%) 39 (93%) 14 (88%) 12 (100%) 13 (93%)
CRRT settings
Blood flow, ml.min* 250 [200-250] 250 [200-250] 250 [250-250] 250 [200-288] 0.66
Effluent flow rate, ml.kg*.h? 29 [26-32] 29 [24-32] 29 [26-31] 29 [27-34] 0.74
Net ultrafiltration flow rate, ml.ht 0 [0-200] 44 [0-300] 50 [0-162] 0 [0-188] 0.78
. . 1 -
i\let ultrafiltration flow rate, ml.h~.kg 0 [0-2.9] 0.7 [0-4.5] 0.6 [0-2.9] 0[0-2.7] 0.83

Data is median [interquartile range] or count (percentage)

Longitudinal groups of temperature gradient categories (columns) were defined as fraction of time spent <-2°C or 20°C
over 30% of total follow-up.

Comparison between groups were performed using Fisher’s test or the Kruskal-Wallis test

CVVHD: continuous veno-venous hemodialysis; CVVH: continuous veno-venous hemofiltration; CRRT: continuous renal
replacement therapy; AT®: temperature gradient; ICU: intensive care unit
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Table S3. Hemodynamic parameters at baseline

Variable All patients AT° < -2°C AT° -2 to 0°C AT 20°C P value
N=42 N=16 N=12 N=14
Duration of follow-up, h 119 [57-143] 140 [23-145] 69 [43-108] 131 [79-144] 0.15
Mean arterial pressure, mmHg 70 [62-75] 71 [65-75] 68 [64-76] 70 [57-75] 0.81
Systolic arterial pressure, mmHg 110 [97-124] 114[103-121] 106[102-134] 106 [80-122] 0.59
Diastolic arterial pressure, mmHg 52 [45-58] 50 [44-56] 56 [48-61] 52 [46-56] 0.26
Cardiac index, L.mint.m 2.8 [2.1-3.3] 2.7 [2.4-3.3] 2.8 [2.1-3.4] 2.8 [2.1-3.2] 0.74
Heart rate, min* 96 [74-113] 82 [72-97] 95 [72-109] 107 [96-119] 0.03
Stroke volume index, ml.m 29 [24-38] 32 [25-45] 26 [22-41] 27 [20-33] 0.23
Preload dependent status, N (%) 22 (52%) 9 (56%) 4 (33%) 9 (64%) 0.30
Central venous pressure, mmHg 8 [6—10] 10 [5-10] 8 [7-9] 8 [6-10] 0.97
Extravascular lung water index, ml.kg? 11 [8.1-13.7] 10.4 [9-13.7] 13.3[10.1-14.8] 11.5[7.5-13] 0.59
Pulmonary vascular permeability index 2.2 [1.9-3] 2.2 [1.7-2.6] 2.4 [1.9-2.8] 2.4 [1.9-3.3] 0.33
Global end-diastolic volume index, ml.m 664 [593-843] 765 [683-932] 732 [567-950] 597 [538-622] <0.01
Norepinephrine administration, N (%) 40 (95%) 15 (94%) 11 (92%) 14 (100%) 0.74
Norepinephrine dose (tartrate), ) o4 10511 41] 0.56 [0.15-1.09] 0.3 [0.2-1.12] 0.76 [0.34-2.62]  0.35
pg.kg™.min
Arterial lactate, mmol.L? 2.9 [1.5-5] 3[1.9-4.7] 1.9 [1.4-3.3] 3.4 [1.6-6.8] 0.60

Data is median [interquartile range] or count (percentage)
Longitudinal groups of temperature gradient categories (columns) were defined as fraction of time spent <-2°C or 20°C over

30% of total follow-up.

Comparison between groups were performed using Fisher’s test or the Kruskal-Wallis test

AT°: temperature gradient
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Table S4. Temperature gradient and core temperature at baseline

Variable All patients AT < -2°C AT° -2 to 0°C AT® 2 0°C P value
N=42 N=16 N=12 N=14
Core temperature
Before CRRT start, °C 36.7 [36.3-37.4] 36.6[36-37.1] 37[36.5-37.5] 36.9[36.4-37.3] 0.43
At inclusion, °C 36.5[35.8-36.9] 35.8 [35.6—36.3] 36.7 [36-36.8] 37 [36.3-37.4] 0.01
Core temperature category 0.06
<36°C, N (%) 15 (36%) 9 (56%) 3 (25%) 3 (21%)
36 t0 37.5°C, N (%) 24 (57%) 7 (44%) 9 (75%) 8 (57%)
>37.5°C, N (%) 3 (7%) 0 (0%) 0 (0%) 3 (21%)
Temperature gradient at inclusion, °C -1.3[-2.9—-0.5] -2.9[-3.3—1.2] -1.3[-2—1.1] -0.6 [-2-0.4] <0.01
Temperature gradient category at inclusion <0.01
<-2°C, N (%) 15 (36%) 9 (56%) 2 (17%) 4 (29%)
-21t0 0°C, N (%) 20 (48%) 7 (44%) 10 (83%) 3 (21%)
>0°C, N (%) 7 (17%) 0 (0%) 0 (0%) 7 (50%)
Core temperature during follow-up
;;agt'é’” of time between 36 and 0.78 [0.61-0.9] 0.74 [0.48-0.79] 0.82[0.78-1] 0.73[0.58-0.9]  0.07
Fraction of time below 36°C 0.08 [0-0.22] 0.25[0.17-0.52] 0.08 [0-0.13] 0 [0-0.06] <0.01
Fraction of time above 37.5°C 0.01 [0-0.13] 0 [0-0.01] 0 [0-0.08] 0.17 [0.09-0.41] <0.01
Temperature gradient during follow-up
Fraction of time with gradient > 0°C 0.05 [0-0.48] 0 [0-0] 0.01[0-0.13] 0.57[0.5-0.8] <0.01
E;atf/\tl:’e”n‘ffzficmaen‘s’gt‘cgradie”t 0.29 [0.12-0.58] 0.13 [0.04-0.29] 0.74 [0.68-0.82] 0.18 [0.12-0.4]  <0.01
Fraction of time with gradient <-2°C 0.24 [0.03—-0.65] 0.77 [0.61-0.94] 0.09 [0-0.14] 0.08 [0-0.21] <0.01

Data is median [interquartile range] or count (percentage)

Longitudinal groups of temperature gradient categories (columns) were defined as fraction of time spent <-2°C or 20°C

over 30% of total follow-up.

Comparison between groups were performed using Fisher’s test or the Kruskal-Wallis test

CRRT: continuous renal replacement therapy ; AT®: temperature gradient
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Table S5. Clinical outcomes

Variable All patients AT° < -2°C AT’ -2 to 0°C AT® 2 0°C P value
N=42 N=16 N=12 N=14

Total number of HIRRT episodes 214 92 54 68 0.03

Number of HIRRT episodes per patient 4 [3-8] 6 [3—-10] 4 [3-4] 6 [3-8] 0.38

Death at day-90, N (%) 26 (62%) 13 (81%) 8 (67%) 5 (36%) 0.04

RRT dependence at day-90, N (%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) >0.99

RRT-free days at day-90 0 [0-74] 0 [0-0] 0[0-52] 63 [0-80] 0.06

Data is median [interquartile range] or count (percentage)

Longitudinal groups of temperature gradient categories (columns) were defined as fraction of time spent <-2°C or 20°C
over 30% of total follow-up.

Comparison between groups were performed using Fisher’s test or the Kruskal-Wallis test

AT’: temperature gradient ; HIRRT: hemodynamic instability related to RRT; RRT: renal replacement therapy
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Table S6. Association of hemodynamics and suspected confounders with longitudinal HIRRT risk (univariate

analysis)

Odd ratio

HIRRT risk in the following 4h

Variables (4-hourly observations) [95% c.i.] P value
Mean arterial pressure, per 10 mmHg increase* <0.01
First degree 0.09 [0.02-0.43]
Second degree 1.01 [1.00-1.02]
Cardiac index, per 0.1 L.min"t.m?increase 0.93[0.91-0.96] <0.01
Heart rate, per 10 min*increase* <0.01
First degree 0.18 [0.09-0.35]
Second degree 1.01[1.01-1.01]
Stroke volume index, per 10 ml.m2increase 0.68 [0.54-0.86] <0.01
Relative change in CCl during postural maneuver, per 1% increase 1.02 [1.01-1.04] 0.01
Preload dependent status (reference is preload independence)!! 1.60[1.11-2.29] 0.01
Norepinephrine dose (tartrate), per 0.1 ug.kg*.minincrease 1.00 [0.98-1.02] 0.50
Temperature gradient, per 0.1°C increase 0.98 [0.97-0.99] <0.01
Weighted temperature gradient, per 0.1°C increase 0.97 [0.95-0.99] <0.01
Pre-treatment confounders
Age, per 1 year increase 1.01 [0.99-1.03] 0.30
Sepsis (reference is no sepsis) 0.78 [0.46-1.33] 0.37
:Ine\ﬁsi,ll;/;::]()achamcal ventilation (reference is no invasive mechanical 0.74 [0.39-1.41] 0.37
RASS score < -4 (reference is > -4) 0.70[0.41-1.22] 0.23
Core temperature, per 1°C increase 1.00 [1.00-1.00] 0.01
CRRT modality is CVWHD (CVVH is the reference) 0.58 [0.31-1.11] 0.09
Post-treatment confounders
Non-cardiovascular SOFA score, per 1 point increase 0.94 [0.89-0.98] 0.01
Delay since last HIRRT < 8h (reference is > 8h) 1.55 [1.07-2.24] 0.02
Daily lactate, per 1 mmol.L! increase 2.27 [1.09-4.72] 0.04

*: quadratic factor in the model
Il: defined as a CCl increase > 10% during the postural maneuver

Mixed effects generalized linear regression models were run on 10 imputed datasets (N=970 observations in each
dataset, due to the absence of follow-up in the next 4h regarding HIRRT at that time point), with the variable of
interest as the fixed effect, HIRRT as the dependent variable, visit number as the random slope nested in a random

intercept corresponding to the patient identification number. Variables were scaled and centered prior to
regression (norepinephrine required additional transformation using the Box-Cox method due to leftward
skewness). Models’ goodness-of-fit were checked using Hartig et al. method (package DHARMa). Fixed effects were
then pooled using Rubin’s rule and descaled to the original hemodynamic parameter scale. Weighting of
temperature gradient was performed using the CBPS method to adjust for the effects of pre-treatment confounders
on temperature gradient. P values were bootstrapped over 500 replicate datasets.

95% c.i.: 95% confidence interval; CCl: continuous cardiac index by pulse contour analysis; HIRRT: hemodynamic
instability related to renal replacement therapy; RASS: Richmond’s analgesia and sedation scale; SOFA= sepsis-
related organ failure assessment.
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Supplemental figure 1. Correlation between core temperature and temperature gradient, and

estimated weights applied to temperature gradient as a function of pre-treatment cofounders
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The figure shows the correlation between core temperatures and temperature gradients in panel A,
and the weight values applied to temperature gradient in models to correct for the confounding effect
of pre-treatment cofounders (core temperature, age, sepsis, RASS, invasive mechanical ventilation,
CRRT modality). Data points are also categorized based on the temperature gradient category (< -2°C
in red, between -2°C and 0°C in green, and 20°C in blue). Weights were determined using the covariate
balancing propensity score methods for continuous treatments (Fong et al., 2018). The figure shows
that in an observation with hyperthermia (> 37.5°C), a higher weigh will be given to observations with

a gradient below 0°C. CRRT: continuous renal replacement therapy; RASS: Richmond analgesia and

sedation scale.
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Supplemental figure 2. Directed acyclic graph
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The figure shows the hypothesized causal relation between temperature gradient set on the CRRT

monitor and the HIRRT risk, mediated through mean arterial pressure and cardiac index. In mediation

models (** and ***), both mediators acted as the main mediator, while the other acted as the alternate

mediator. Preload (*) was also included given the theoretical impact of temperature gradient on venous

vasomotor tone and venous return. Core temperature and other covariates acted as a potential pre-

treatment confounder (in red), while norepinephrine dose, non-cardiovascular SOFA score and arterial

lactate concentration acted as post-treatment confounders, interacting with both the outcome and

mediators (in blue). Interactions between mediators and treatment were also accounted for.

SOFA: sepsis-related organ failure assessment
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Supplemental figure 3. Core temperature, CRRT set temperature and temperature gradient over time

38 Interaction: P <0.01

Core temperature, °C

Baselined 12 24 36 48 60 72 84 96 108 120 132 144 156
Time since inclusion, h

Interaction: P < 0.01

Set temperature, °C
[ ]
[ ]
[ ]
g
-~—
-—
-~—
-~
-
-
[}
®

Baselined 12 24 36 48 60 72 84 96 108 120 132 144 156
Time since inclusion, h

1 Interaction: P < 0.01

Temperature gradient (core - set), °C

Baselined 12 24 36 48 60 72 84 9% 108 120 132 144 156
Time since inclusion, h

Temperature gradient <-2°C 16 16 16 16 14 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 10 10 10 10 10 10 10 9 9 8 7 7 4 2

Temperature gradient -2°Ct00°C 12 12 12 12 12 12 11 11 11 11 10 9 9 9 8 8 8 7 7 7 5 5 4 4 4 4 4 4 3 2 2 2 2 2 1 1 1 1 0 0

14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 13 12 11 11 10 10 10 10 10 10 9 9 9 9 8 8 7 6 6 6 5 2 2

The figure shows the median value and first and third quartile value of core temperature (A), CRRT set
temperature (B) and temperature gradient (C) over time in the cohort, categorized by the fraction of
time spent in a temperature gradient category (>30% of time with temperature gradient > 0°C in blue,
>30% of time with temperature gradient < -2°C in red, the remaining observations in grey). Below the
panels are the number of patients at risk in each category over time. In each panel, the P value
examines the association of the interaction existing between elapsed time since inclusion (categorical)
and the gradient category with the variable of interest, using a linear mixed effects model, with the
patient identification number as the random intercept and the elapsed time as a random effect
(continuous). An offset for the core temperature measured before inclusion was also included. CRRT:

continuous renal replacement therapy.
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Supplemental figure 4. Core temperature, CRRT set temperature and temperature gradient over time

in the 42 patients of the cohort.
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The figure shows the longitudinal evolution of core temperature (in red), set temperature (in black),

and the gradient (the difference between the two latter) in patients included in the study. Positive

gradients are represented with a blue shade, and the fraction (%) of time spent with a gradient >0°C is

given for each individual. CRRT: continuous renal replacement therapy.
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Supplemental figure 5. Observed hemodynamic values based on the temperature gradient and core

temperature categories.
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The figure shows the observed median value of mean arterial pressure (A), cardiac index (B), heart rate
(C), stroke volume index (D), relative change in CCl during a postural maneuver (E) and norepinephrine
dose (F) as a function of the core temperature category (x axis) and the temperature gradient (< -2°C

in red, between -2 and 0°C in grey, and = 0°C in blue) during longitudinal follow-up (4-hourly

observations, N=1012).

CCI: continuous cardiac index by pulse contour analysis.
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Supplemental figure 6. Association of temperature gradient with longitudinal HIRRT risk during

follow-up (unweighted analysis in observations with normal core temperature)
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The figure shows the predicted risk of HIRRT associated with temperature gradient during follow-up in
observations with a normal core temperature (P=0.02). Gradient categories are also represented. The
grey shade represents the standard deviation of the prediction. Prediction was performed using a
generalized linear regression mixed effects model, with HIRRT as the dependent variable, temperature
gradient as the explanatory variable, and applied to 10 imputed datasets. Models’ random effects were
arandom slope of visit number nested in a random intercept corresponding to the patient identification
number. Model coefficients were not weighted for core temperature. Model coefficients were then
pooled and applied to a synthetic dataset with temperature gradient varying between the lowest and
highest value observed in the cohort. For each imputed datasets, the C-statistics (and its 95%
confidence interval, Delong’s method) and the Hosmer-Lemeshow goodness-of-fit test was performed,
and their results pooled. Final model’s C-statistics: 0.56 [95% confidence interval: 0.53—0.59], Hosmer-

Lemeshow goodness-of-fit test: P=0.01.
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Supplemental figure 7. Mediation analysis in 4-hourly observations using a temperature gradient cut-

off value 2 -1°Co < -1°C
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The methodology follows exactly that presented in the main analysis, except for the modification of

the cutoff value used to define treatment (in blue) and controls (in red), modified to -1°C.

55

(CC BY-NC-ND 4.0) FRAIRE



Supplemental figure 8. Mediation analysis in 4-hourly observations with or without preload

dependence.
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Weighted estimates for 4-hourly HIRRT risk

Given the fact that a potential interaction existed between preload dependence and cardiac index in
HIRRT risk prediction, a sensitivity analysis was performed in the subgroup of 4-hourly observations
with preload dependence (N=360) and those without (N=617, 35 imputed missing observations in the
original datasets). Preload dependence was defined as relative change in continuous cardiac index >
10% during a postural maneuver performed at time of observation. The methodology follows exactly

that presented in the main analysis.
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Supplemental figure 9. Mediation analysis in 4-hourly observations with normothermia.
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Weighted estimates for 4-hourly HIRRT risk

The figure shows the sensitivity analysis performed in the subset of observations with normothermia

(N=753, core temperature between 36°C and 37.5°C). The methodology used follows exactly that

presented in the main analysis.
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Nom, prénom du candidat : FRAIRE Lorna

CONCLUSIONS

L'instabilit¢ hémodynamique liée a I’épuration extra rénale (HIRRT, pour
hemodynamic instability associated with renal replacement therapy) est une
complication sévere, observée avec toutes les techniques de I’épuration extra-rénale
(EER) couramment utilisées, et est associé a une augmentation de la morbi-mortalité
en réanimation. Les mécanismes physiopathologiques et réversibles associés a
I’HIRRT impliquent I’application de réglages adéquats des paramétres de I’EER afin
de prévenir cet événement indésirable. Parmi ceux-ci, le réglage d’une température du
circuit extracorporel adaptée a la température corporelle du patient pourrait permettre,
grice a un transfert calorique favorable, une amélioration de la stabilité
hémodynamique.

Nous avons, en conséquence, émis I'hypothése qu’un réglage de la température du
circuit extracorporel (T°gere) en dessous de la température centrale (T°core) pendant
I'épuration extra rénale continue (EERc) pourrait réduire le risque d’HIRRT grace aux
effets de I'hypothermie relative sur le débit cardiaque et le tonus vasomoteur artériel.
L'objectif principal de I'étude était d’étudier la relation causale entre le gradient de
température (AT®, correspondant a la différence entre T°core €t T°EErc) €t le risque
longitudinal d'HIRRT chez les patients de réanimation traités par EERc.

Il s’agit d’une analyse ancillaire d’une étude prospective, observationnelle et
monocentrique, portant sur des patients de réanimation présentant une insuffisance
rénale aigué de stade 3 sous EERc depuis moins de 24 heures, et porteurs d’une
technique de surveillance continue de I’index cardiaque calibré (PiCCO®, Pulsion
Medical, Allemagne).

Le AT® correspondait & Tcre — T°EEre (i.€. une valeur positive indique une T°ggre
inférieure & T°core). La T°kere €t la T ore (cette derniére mesurée par le dispositif
PiCCO®), les parametres hémodynamiques (pression artérielle moyenne [PAM],
fréquence cardiaque, index cardiaque [IC], et la dose de noradrénaline) et les épisodes
d’HIRRT nécessitant une intervention thérapeutique (définie par PAM < 65 mmHg)
étaient recueillis toutes les 4 heures entre I’inclusion et J7 (ou la fin du suivi). Les
données étaient exprimées sous forme de médiane [intervalle interquartile].

L’analyse principale a été réalisée en médiation causale a co-médiateurs multiples pour
évaluer I’effet du AT® sur le risque longitudinal d’HIRRT pendant le suivi, en tenant
compte des roles conjoints de I’IC et de la PAM, et en ajustant pour les covariables pré-
traitement (température corporelle) et les cofacteurs associés au risque d’HIRRT (score
de gravité clinique SOFA, dose de noradrénaline, lactate artériel).
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Quarante-deux patients ont €té inclus (dge : 68 [58-76] ans, score SOFA a I’inclusion
: 12 [8-15]) et suivis pendant 119 [57-143] heures (N = 1012 observations par 4
heures). Le AT® médian durant le suivi était de -1,3 [-2,4 —+0,1] °C. Le nombre médian
d’épisodes de HIRRT par patient était de 4 [3-8].

Une augmentation du AT® était significativement associée a une augmentation de la
fréquence cardiaque, une augmentation de I’IC et de la PAM, ainsi qu’a une réduction
de la dose de noradrénaline. Par ailleurs, une augmentation du AT® était
significativement associée a une diminution du risque de HIRRT en analyse univariée
(0,97 [0,95-0,99] par augmentation de 0,1°C, P <0,01).

L’analyse de médiation causale a démontré qu'un AT® > 0°C réduisait
significativement le risque de HIRRT par rapport & un gradient < 0°C, via une
augmentation de la PAM et de I’IC (proportion médiée : 55 % et 38 % de I’effet total
du AT® sur le risque de HIRRT, respectivement). Aucun effet direct (non médié) du
AT® sur le risque de HIRRT n’a été identifié.

En conclusion, malgré des limites inerrantes au design de I’étude (monocentrique et
observationnelle), notre travail a permis de montrer que le réglage d’une température
du circuit extracorporel inférieure a la température corporelle réduisait
significativement le risque d’HIRRT au cours du traitement par EERc. Cet effet
protecteur d’un AT® positif était principalement médié par les conséquences
hémodynamiques favorables d’une perte de chaleur, possiblement responsable d’une
augmentation de la PAM et de I’index cardiaque.
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Effet du gradient de température sur le risque d’instabilité hémodynamique
pendant I’épuration extra rénale continue en réanimation : une analyse de
médiation causale.

FRAIRE Lorna - Thése Médecine spécialisée clinique : Lyon 2025 ; n°39

Introduction : Abaisser la température du circuit extracorporel (T°CRRT) en dessous de la température centrale
(T°core) lors de I'épuration extra rénale continue (EERc) pourrait réduire I'instabilité hémodynamique (HIRRT pour
hemodynamic instability related to renal replacement therapy) en modifiant le débit cardiaque et le tonus
vasomoteur. Cette étude visait a évaluer la relation causale entre le gradient de température (AT®) existant entre
Tocore et T°CRRT et le risque longitudinal de HIRRT. Méthodes : Cette analyse ancillaire d'une étude prospective
monocentrique (NCT03139123) a inclus des patients présentant une insuffisance rénale aigué de stade 3 (KDIGO),
sous EERc depuis moins de 24 heures et bénéficiant d'une surveillance continue de I'index cardiaque. T°CRRT et
T°core étaient mesurées toutes les 4 heures entre l'inclusion et le jour 7. Le AT® (T°core - T°CRRT) a été calculé, et
les paramétres hémodynamiques ainsi que les épisodes de HIRRT (définis par une pression artérielle moyenne < 65
mmHg nécessitant une intervention thérapeutique) ont été recueillis. Une analyse de médiation a évalué l'effet de
AT® sur le risque longitudinal de HIRRT via l'index cardiaque et la pression artérielle moyenne. Résultats : 42
patients ont été inclus (age 68 [58-76] ans, SOFA 12 [8-15], 33 (79 %) atteints de sepsis) et suivis pendant 119
[57-143] heures (N=1012 observations). Une augmentation de AT° était significativement associée a une
augmentation de la fréquence cardiaque, de l'index cardiaque et de la pression artérielle moyenne, ainsi qu'a une
diminution de la dose de noradrénaline et du risque de HIRRT en analyse univariée (0,97 [0,95-0,99] par
augmentation de 0,1°C, P<0,01). L'analyse de médiation causale a montré qu’un AT°® > 0°C réduisait
significativement le risque de HIRRT par I'amélioration de la pression artérielle moyenne et de I'index cardiaque (effet
médié : 55 % et 38 % de l'effet total, respectivement). Conclusions : Lors de I'EERc, une augmentation de AT®
réduit le risque de d’instabilité hémodynamique, en améliorant la pression artérielle moyenne et le débit cardiaque.

Effect of temperature gradient on hemodynamic instability risk during continuous renal replacement
therapy: a causal mediation analysis

Introduction: Lowering extracorporeal circuit temperature (T°crrt) below core temperature (T°core) during
continuous renal replacement therapy (CRRT) may decrease hemodynamic instability (HIRRT) by affecting cardiac
output and vasomotor tone. This study aimed to evaluate the causal relationship between core-to-CRRT temperature
gradient and HIRRT longitudinal risk. Methods: This ancillary analysis of a prospective, single-center study
(NCT03139123) included patients with stage 3 acute kidney injury, who received CRRT for <24h and had continuous
cardiac index monitoring. T°crrt @and T°wre Were measure every 4-hourly between inclusion and day 7. Temperature
gradient (T°core - T°crrT) Was calculated and, hemodynamics parameters and HIRRT (defined as a mean arterial
pressure < 65 mmHg requiring therapeutic intervention) were collected. Mediation analysis evaluated the effect of
AT® on HIRRT longitudinal risk during follow-up, mediated through cardiac index and mean arterial pressure.
Results: 42 patients were enrolled in this ancillary analysis (age 68 [58-76], SOFA 12 [8-15] and 33 (79%) had
sepsis), and were followed over 119 [57-143] hours (N=1012 observations). Increasing AT® was significantly
associated with higher heart rate, CI and MAP, and lower norepinephrine dose, and reduced HIRRT risk in univariate
analysis (0.97 [0.95-0.99] per 0.1°C increase, P<0.01). Causal mediation analysis showed that AT® > 0°C
significantly decreased HIRRT risk through improved MAP and CI (mediated: 55% and 38% of the total effect,
respectively). Conclusions: During CRRT, increasing AT® between led to a lower risk of HIRRT, through an
improvement in both MAP and CI.

MOTS CLES : Epuration extra rénale continue ; Température ; Hémodynamique ; Index cardiaque ;
Pression artérielle moyenne
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