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INTRODUCTION.

LA solution de tout probléme déterminé se réduit , en
derni¢re analyse, & la résolution 'dune oy de plusieurs
équations, dont les coefficiens sont donnés en nombres ,
et qu'on peut appeler équations numériques. Tl est done
important d’avoir des méthodes pour résoudre compléte-
ment ces équations , de quelgne degré qu’elles soient. Celle
que Pon trouve dans le Recueil des Mémoires de I'Aca-
démie de Berlin poar Pannée 1767, est la seule qui offre
des moyens directs et stirs de découvrir toutes les racines
tant réelles quimaginaires d’une équation numérique don-
née, et d’approcher le plus rapidement et aussi prés que
Yon veut de chacune de ces racines. On a réuni dans le
présent Traité le Mémoire qui contient cette méthode, et
les Additions qui ont parn dens le volume des Mémoires
de la méme Académie, pour 'année 1768. Et pour rendre
ce Traité plus intéressant » On y a joint plusieurs N otes,
dont les deux derniéres paraissen( pour la premiére fois
dans cette nouvelle Edition. Ces Notes contiennent des
recherches sur les principaux points de la théorie dog
€quations algébriques.

11 faut bien distinguer la résolution des équations num¢-
riques de ce qu’on appelle en algébre la résolution générale
des équations. La premiére est » & proprement parler, une
opération arithmétique | fondée 3 1a veérité sur les prineipes
généraux de la théorie des ¢quations, mais dont les résultats
ne sont que' des nombres, oy Pon ne reconnait plus les
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V) INTRODUCTION.

premiers nombres qui ont servi d’élémens, et qui ne con-
servent aucune trace des différentes opérations particulicres
qui les ont produits. I’extraction des racines carrées et
cubiques est Popération-la plus simple de ce genre ; cest
la résolution des équations numériques du second et du
troisitme degré, dans lesquelles tous les termes intermé-
diaires manquent. Aussi conviendrait-il de donner dans
Parithmétique. les régles de la résolution des équations nu-
mériques, sauf & renvoyer & Palgébre la démonstration de
celles qui dépendent de la théorie générale des:équations.

" Newton a appelé Palgebre arithmétique universelle. Cette
dénomination est exacte a quelques égards; mais elle ne
fait pas assez connaitre la véritable différence qui se trouve
entre Parithmétique et Palgeébre. Le caractére essentiel de
celle-ci consiste en ce que les résultats de ses opérations ne
donnent pas les valeurs individuelles des quantités qu’on
cherche, comme ceux des opérations arithmétiques ou des
constructions géométriques, mais représentent seulement

les opdrations , soit arithmétiques ou géométriques qu’il
faudra faire sur les premicres quantites données pour obtenir
les valeurs cherchées; je dis arithmétiques ou géométriques,
car on connait depuis F7iéte les constructions géométriques
par lesquelles on peut faire sur les lignes les mémes opé-
rations que Ton fait en arithmétique sur les nombres.

I’algébre plane pour ainsi dire également sur 1’arithmé--

tique et sur la géométrie; son objet n’est pas de trouver les
valeurs mémes des quantités cherchées, mais le systéme
d’opérations & faire sur les quantités données pour en dé-
duire les valeurs des quantités quon cherche, d’aprés les
conditions du probleme. Le tableau de ces opérations repré-
sentées par les caractéres algébriques; est ce qu'on nomme
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en algebre une formule ; et lorsquune quantité dépend
d’autres quantités, de maniére qu'elle peut étre exprimée
par une formule qui contient ces quantités, on dit alors
quelle est une fonction de ces mémes quantités.

L’algtbre prise dans le sens le plus étendu |, est Part de
déterminer les inconnues par des fonctions des quantités
connues, ou qu'on regarde comme conniies; et la résolu-
tion générale des équations consiste & trouver pour toutes
Jeséquations d’'un méme degré, les fonctions des coefficiens

de ces équations qui peuvent en représenter toutes les
racines. : :

On n’a pu jusqu’a présent trouver ces fonctions que pour
les  équations du second , du troisitme et du quatriéme
degré; mais quoique ces fonctions expriment généralement
toutes les racines des équations de ces mémes degrés , elles
se présentent néanmoins, deés le troisiéme degré , sous une
forme telle quil est impossible d’en tirer les valeurs numé-

riques des racines par la simple substitution de- celles des
coefficiens , dans lee cas ruémes ol toutes les racines sont

essentiellement réelles; c’est cette difficulté que les Ana-
lystes désignent par le nom de cas irréductible; elle aurait
lieu & plus forte raison dans les équations des degrés supé-

rieurs, sil était possible de les résondre par-des formules
générales.

Heureusement on a trouvé le moyen de 1a vaincre dans le
troisieme et le quatrieme degré, par la considération de
la trisection des angles, et par le secours des tables trigo-
nométriques ; mais ce moyen qui dépend de la division
des angles, n’est applicable dans les degrés plus élevés qua
une classe d’équations trés-limitée ; et on peut assurer
d’avance que ‘quand méme on parviendrait & résoudre gé-
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néralement le cinquiéme degré et les suivans, on n'aurait
parld que des formules algébriques , précieuses en elles-
mémes, mais trés-peu utiles pour la résolution effective et
numérique des équations:des' mémes degrés, et qui, par
conséquent , ne dispenseraient pas d’avoir recours aux mé-
thodes arithmétiques qui sont objet de ce Traité,

Fiéte est le premier qui se soit occupé de la résolution
des équations numériques d'un degré quelconque. 11 fait
voir dans le Traité de numerosa potestatum adfectarim
7esolutione y comment on peut résoudre plusieurs équations
de ce genre par des opérations analogues A celles qui servent
a extraire les racines des nombres.

Harriot ; Ougtred s Pell, etc. ont cherché A faciliter la
pratique de cette méthode, en donnant des regles particu-
licres pour diminuer les titonnemens, suivant les différens
cas qui ont lieu dans les équations relativement aux signes
de leurs termes. Mais la multitude des opérations qu’elle

demande , et Pincertitude du succés dans un grand nombre
de . cas-Yont fait abunmdeines entidremeorit.

En effet, il est aisé de se convaincre qu'elle ne peut
réussir d’'une maniére certaine , que pour les équations dont
tous les termes ont le méme signe, i exception du dernier
tout connu; car alors ce terme devant étre égal A la somme
de tous les autres, on peut, par des titonnemens limités
et réglés , trouver successivement tous les chiffres de Ia
valeur de Tinconnue , jusquau degré de précision qu'on
aura fixé, Dans tous les autres cas, les tAitonnemens devien-
dront plus ou moins incertains , & cause des termes sous-
tractifs.

Il faudrait donc, pour I'emploi ‘de cette méthode, quion
put par une préparation préliminaire réduire toutes les
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équations A cette forme. Nous prouverons, dans une des
Notes (*); que cette réduction est toujours possible; pourvu
qu’on ‘ait'deux limites d’une racine, Tune en plus} Tautre
en moins, et qui soient telles que toutes les autres raciriés,
ainsi que les parties réelles des racines imaginaires, il y en
a, tombent hors de ces limites. Mais la difficulté de trouver
ces limites est elleeméme aussi grande, et peut étre quel-
quefois plus grande que celle de résoudre Péquation.

A la méthode de Fiete a succédé celle de Newtorn, qui
n'est proprement quune méthode d’approximation , puis-
qu’elle suppose que Pon ait déja la valeur de la racine qu’on
cherche, & une quantité prés moindre que sa dixiéme partie;
alors on substitue cette valeur plus une nouvellé inconnue
a l'inconnue de P'équation proposée ; et I'on a une seconde
¢quation dont la racine est ce qui reste & ajouter a la’ pre-
miere valeur pour avoir la valeur exacte de la racine cher-
chée ; mais A cause de la petitesse supposée de ce reste, on
néglige dans la nouvelle équation le carré et les puissances
plus hautes de Pinconnue; et équation étant ainsi rabaissée
au premier degré, on a sur-le-champ Ia valeur de Pinconnue.
Cette valeur ne sera encore qu'approchée ; mais on pourra
sen servir pour en trouver une autre plus exacte, en fai-
sant sur la seconde équation la méme opération que sur la
premiere , et ainsi de suite. De cetle maniére, on frouve
a chaque opération une nouvelle quantité i ajouter ou A
retrancher de la valeur déjd trouvée, et on a la racine d’au-
tant plus exacte, qu’on pousse le calcul plus loin.

Telle est 1a méthode que U'on emploie communément
pour résoudre les équations numériques ; mais elle ne sert,

(*) Yoyez la Note XII.
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comme Pon voit, que pour celles qui sont déja A peu prés
résolues. De plus, elle n’est pas toujours stire ; car en né-
gligeant a chaque opération des termes dont on ne connait
pas la valeur , il est impossible de juger du degré d’exac-
titude de chaque nouvelle correction ; et il peut arriver,
dans les équations qui ont des racines presque égales, que
la série soit tres-peu convergente , ou quelle devienne
méme  divergente aprés avoir été convergente (*). Enfin
elle a encore I'inconvénient de ne donner que des valeurs
approchées des racines mémes qui peuvent étre exprimées
exactement en nombres, et de laisser par conséquent en
doute si elles sont commensurables ou non.

’

Le probléme qu'on doit se proposer dans cette partie
de PAnalyse, est celui-ci : Etant donnée une équation nu-
mérique sans aucune notion préalable de la grandeur ni
de lespéce de ses racines , trouver la valeur numérique
exacte, sil est possible , ou aussi approchée qidon voudra
de chacune de ses racines. Ce probléme n'avait pas encore

été résolu; il fait Pobjet des recherches suivantes.:

Depuis la premiere Edition de cet Ouvrage (**), il a paru
différentes méthodes pour la résolution des équations nu-
mériques ; mais la solution rigoureuse du probléme dont
il s’agit, est restée au méme point ol je lavais portée; et
jusqu’ici on n’a rien trouvé qui puisse dispenser dans tous
les cas de la recherche d’une limite moindre que la plus
petite différence entre les racines, ou qui soit préférable
aux moyens donnés dans la Note IV ponr faciliter celte
recherche,

(*) Voyez la Note V.
(**) En 1708.
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CHAPITRE PREMIER.

Méthode pour trouper , dans une équation numérique
quelconque , la valeur entiére la plus approchée de
chacune de ses racines réelles.

1. Théoréme 1. SI I'on a une équation quelconque, et que l'on
connaisse deux nombres tels qu'étant substitués successivement &
la place de Iinconnue de cette équation, ils donnent des résul-
tats de signe contraire, I’équation aura nécessairement au moins
une racine réelle dont la valeur sera entre ces deux nombres,

Ce théoreme est connu depuis long-temps, et I'on a coutume
de le démontrer par la théorie des lignes courbes; mais on peut
aussi le démontrer directement par la théorie des équations , en

I
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cette sorte : Soit x I'inconnue de 1'équation, et a, B, 3, etc. ses
racines, I’équation se réduira, comme lon sait, & cette forme

(x —w@) (g —L)(x=17%)....=o.

Or, soient p et g les nombres qui, substitués par x, donne-

ront des résultats de signe contraire , il faudra donc que ces
deux quantités

(p—2)p—B)(p—12%).....
(9 —2) (4 BPP(g~9).....

soient de signes différens; par conséquent, il fandra qu’il y ait
au moins deux facteurs correspondans , comme p—a et ¢ —a,
qui soient de signes contraires : donc il y aura au moins une des
racines de I’équation, comme a, qui sera entre les nombres p et g,
c’est-3-dire, plus petite que le plus, grand de ces deux nombres,

et plus grande que le plus petit d’entre eux; donc cette racine
sera nécessairement réelle.

2. Corollaire 1. Donc, si les nombres p et ¢ ne différent 'un
de Tantre que de l'wnité , ou d'une quantité moindre que
P'unité, le plus petit de ces nombres ,-s'il est entier,-ou .le nombre

entier qui sera immédiatement moindre que le ‘plus petit de ces
denx nombres, s'il n’est pas entior, sera la valeur entiere la
plus approchée d’une des racines de I’équation. Si la différence
entre p et g est plus grande que 'unité, alors nommant n, n--1,
n - 2, ete. lesnombres entiers qui tombent entre p et ¢, il est
clair que, sion substitue successivement & la place de I'inconnue,
les nombres p, n, n—41, n—+2, ete. ¢, on trouvera ndcessai-
rement deux substitutions consécutives qui donneront des résul-
tats de signes différens; donc, puisque les nombres qui- donneront
ces deux résultats ne different entre enx que de 'unité, on trou-

vera, comme ci-dessus, la valeur entiére la plus approchée d’une
des racines de 1’équation.

5. Corollaire 2. Toute équation dont le dernier terme est
négatif, en supposant le premier positif, a nécessairement une
racine réelle positive, dont on pourra trouver la valeur entidre
la plus approchée , en substituant & la place de Vinconnue les
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nombres o, 1, 2, 3, etc. jusqu'a ce que l'on rencontre deux
substitutions qui donnent des résultats de signe contraire.

Car, en supposant le premier terme x”, et le dernier —H
(H étant un nombre positif), on aura, en faisant z=o0, le résultat
négatif —H, et en faisant x=w, le résultat positif ™ ; donc
on aura ici p=o0 et g==; donc les nombres entiers inter-
médiaires seront tous les nombres naturels 1, 2, 3, ete. donc, etc.
(Coroll. préc.)

De 14 on voit, 1° que toute équation d'un degré impair, dont
le dernier terme est négatif, a nécessairement une racine réelle
positive.

2°, Que toute équation d’un degré impair, dont le dernier
terme est positif, a nécessairement une racine réelle négative ;
car, en changeant x en —z, le premier terme de l’équation
deviendra négatif : done, changeant tous les signes pour rendre
de nouveaun le premier terme positif, le dernier deviendra néga-
tif: donc 1’équation aura alors une racine réelle positive; par
conséquent, P’équation primitive aura une racine réelle négative.

3°. Que toute équation d'un degré pair, dont le dernier terme
est négatif, a nécessairement deux racines réelles, l'une positive
et l'autre négative; car, premiérement, elle aura une racine
réelle positive ; ensunite , comme en changeant x en —x, le
premier terme demeure positif, la transformée aura aussi une
racine réelle positive: donc I'équation primitive en aura une
réelle et négative.

4. Remarque. Comme on peut toujours changer les racines
négatives d’une équation quelconque en positives, en changeant
seulement le signe de l’inconnue, nous ne considérerons dans
la suite, pour plus de siinplicité, que les racines positives; ainsi,
quand il s’agira d’examiner les racines 'd’une équation donnée,
on considérera d'abord les racines positives de cette équation ,
ensuite on y changera les signes de tous les termes ou I"inconnue:
se trouvera ¢levée ‘4 une puissance impaire, et on  considérera
de méme les racines positives de cette nouvelle équation’; ces

racines, prises en moins, seront les racines négatives de la
proposée.
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5. Théoréme 1I. Si dans une équation quelconque qui a
une ou. plusieurs racines réelles et inégales, on substitue suc-
cessivement a la place de I'inconnue deux nombres, dont l'un
soit plus grand et dont I'autre soit plus petit que l'une de ces
racines , et qui différent en méme femps I'un de l’antre d’une
quantité moindre que la différence entre cette racine et chacune
des autres racines réelles de I'équation , ces deux substitutions
donneront nécessairement deux résultats de signes contraires.

En effet, soit « une des racines réelles et inégales de I’équation ,
et 8,7, d, etc. les autres racines quelconques; soit de plus p la
plus petite des différences entre la racine o et chacune des autres
racines réelles de ’équation, il est clair qu'en prenant STy
g <o, et p—g<p, les quantités p—a, et g—a seront de
signes contraires , et que les quantités p — 3, p — %, et@ seront
chacune de méme signe que sa correspondante g— 2, g—y, etc.
car, si p—f3, et g— [ étaient de signes contraires, il faudrait
que f fit aussi compris entre p et ¢, ce qui ne se peut. Donc
les deux produits

(Br=i2). (2 — B) (2= 3)ins
(9 —a)(g—PB)(g—2).....
c’est-a-dire, les résultats des substitutions de p et g ala place

de Ilinconnue x (n° 1), seront nécessairement de signes
contraires. ;

6. Corollaire 1. Denc, si dans une équation quelconque on
substitue successivement 3 la place de l'inconnue les nombres
en progression arithmétique

g i 2 i g L R Y L B o e L (A)

les résuitats correspondans formeront une suite, dans laquelle
il y aura autant de variations de signes que 1’équation proposée
aura de racines réelles positives et inégales, mais dont les diffé-
rences ne seront pas moindres que la différence A de la progression,
De sorte que si on prend A égale ou moindre que la plus petite
des différences entre les différentes racines positives et inégales
de P’équation , la suite dont il sagit aura nécessairement autant
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de variations de sigues que 'équation contiendra de racines réelles

positives et inégales.

Done, si la différence A est en méme temps égale ou moindre
que I'unité, on trouvera aussi , par ce moyen, la valeur entiére
approchée de chacune des racines réelles positives et inégales
de I’équation (n° 2).

Si I’équation ne pent avoir qu'une seule racine réelle et positive,
ou si elle en a plusieurs, mais dont les différences ne soient pas
moindres que P'unité, il est clair qu’on pourra faire A=1, cest-
a-dire qu’on pourra prendre les nombres naturels o, 1,2, 3, etc.
pour les substituer & la place de Iinconnue; mais, ¢’ily a dans
I’équation des racines inégales dont les différences soient moindres
que l'unité, alors il faudra prendre A moindre que l'unité, et
telle qu'elle soit égale ou moindre que la plus petite des différences
entre les racines dont il s’agit: ainsi la difficulté se réduit & trouver
la valenr qu’on doit donner & A, ensorte quon soit assuré qu’elle
ne surpasse pas la plus petite des différences entre les racines
positives et inégales de I'équation proposée : c’est T’objet du pro-
bléme suivant.

7. Corollaire 2. Toute équation qui a un seul changement de
signe, a nécessairement une seule racine réelle positive.

1l est d’abord clair que Véquation auvra nécessairement une
racine réelle positive, a cause que son dernier terme sera de

signe différent du premier (n° 3). Or je vais démontrer qu’'elle ne
peut en avoir quune. )

Soit (en supposant le premier terme positif, comme & Vor-
dinaire) X la somme de tous les termes positifs de I’équation,
et Y la somme de tous les négatifs, en sorte que l’équation soit
X —Y =o; et puisquil n’y a, par 'hypothése, qu'un seul
changement de signe, il est clair que les puissances de I'inconnue
_du polynome X, seront toujours plus hautes que celles du poly-
nome Y ;de sorte que si «’ est la plus petite puissance de = dans
le polynome X, et qu'on divise les deux polynomes Xet Y par &,

la quantité = ne contiendra que des puissances positives de =z,
X
Y

2

et la quantité — ne contiendra que des pujssances négatives
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. F . X A
de 23 d'ol il snit que = croissant, la valeur de = devra croftre

. L] 2 i :
aussi, et x diminuant, - diminuera aussi, 3 moins que le poly-

nome X ne contienne que le seul terme 2’y auquel cas i—(; sera tou-
jours une quantité constante; au contraire , x croissant, la valeur
de — diminuera nécessairement, et z diminuant, ;_ira en aug-
mentant. Soit ala racine réelle ot positive de I"équation, onaura
donc, lorsque x =@ 2% = X715 donc augsi = — Y

7 =i donc, en sub-

stituant an lieu de 2 des nombres quelconques plus grands que a,
. X 3% , 2
on aura toujours = >_E” et par conséquent X — Y €gal 4 un
nombre positif; et en substituant au lieu de x des nombres moindres
; X ¥ r Y 3
que ¢, on aura tou;ours;; - -, i et par consequent X —Y egal aun
nombre négatif: donc il sera impossible que P'équation ait des

racines réelles positives Plus grandes ou plus petites que a.

8i I'équation a plusieurs changemens de si
aussi plusieurs racines réelles positives; mais lenr nombre ne peut
jamais surpasser celui des changemens ou variations de signe:

c’est ce théoréme qu’on appelle la régle de Descartes. Voyez la
note VIII. ;

gne, elle peut avoir

8. Probléme. Une équation quelconque étant donné

une autre équation dont les racines soient les différenc
racines de I'équation donnée,

€, trouver
es entre les

Soit donnée Péquation

AT AT Bam =4 o Cgm— ~+ etc. =o....(B);

on sait que @ peut étre indifféremment €gal & une quelconque de
$es racines: soit &’ une - autre racine quelconque de la méme
€quation, en sorte que P'on ait aussi :

T — Az'm =1t L Bayim—s Ca'==sigiapi o

et soit » la différence entre les déux racines 2 ‘et ', de manitre
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que P'on ait 2’ = x -}-u; substituant cette valeur de =’ dans la
derniére équation , et -ordonnant les termes par rapport a.z, on
aura une équation en z du méme degré m, laquelle, en commen-
gant par les derniers termes, sera de cette forme

X4 Yu+Zw - Vi +ete, -1 — o -
les coefliciens X, Y, Z, -etc. étant des Fonctions de x telles que
X = a"—Ax" ' 4 Ba"—* — CGagr—3 -} etc,

Y = mam— —(m—1) Aan—* (m—2) Bam=3 —'etc,

-, BT A) g 0 e ooh gl pliggl

2
etc.

c’est-a-dire , suivant.la nofation du ¢alcul différentiel ,
. St

Y:.:(—H—{ Y

i

i d’X

il I f— ke

2dx? VS 2.3ds * ©lC

Done, puisque par 1'équation donnée (B) ona X=o, I'équation
précédente étant divisée par u, deviendra celle-ci :

Y +Zu - Var + ete. o~ =o, . ...... (C).

Cette équation, si on y substitue pour x .une quelconque des
racines de 1’équation (B), aura pour racines les différences entre
cette racine et toutes les autres de la méme équation (B) : done,
si on combine les équations (B) et (C).enéliminant &, on aura
une ¢quation en z, dont les racines seront:les. différences entre
chacune des racines de I’équation (B) et toutes les autres racines
de la méme équation; ce sera I’équation cherchée.

Mais sans exécuter cette élimination, qui serait souvent fort
laborieuse, il suffira de considérer :

1°. Que a, B, 5, etc. étant les racines de I’équation en z, celles
de I’"équation en % seront a—f3, a—y, elc, B—aua, B—y, etc.
¥ —a, y—f, etc., etc. ; ot I'on voit que ces racines seront an
nombre ‘de 7 (m —1), et que.de plus “elles seront égales deux
a deux, et de signes contraires ; de sorte que I'équation en u

SCD Lyon 1
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manquera nécessairement de toutes les puissances impaires de .

Donc, en faisant (ALt

=n et uw*=v, l'équation dont il

gagit sera de cette forme :

2°. Que (¢ — )%, (a—13)°, (B—12), etc. étant les différentes
valeurs de v dans 1'équation (D)), le coeflicient @ sera égal ala
somme de toutes ces valeurs, le coeflicient & sera la somme
de tous leurs produits deux & deux, etc.

Or il est facile de voir que (a—f)* 4 (e — 9 )*~ (B —19 )*--etc.
= (m—1) (a* 4 B* " +etc.) —2(2f 42y + By —etc.) ;
mais on sait que af3—4a) ) + etc. =B; et a*- 49> etc.
—A*—2B: donc on aura a=(m—1) ( A*—2B) — 2B,
savoir: a=(m—1) A*—2mB; et on pourra, de la méme
manicre , trouver la valeur des autres coefliciens 5, ¢, etc.

Pour y parvenir plus facilement, supposons

A, e« -+ B -+ 3 = etc.
A, a* 4 £ 4+ 3* - ete.
Ay =a® 4 ¥ 4 3° -~ ete.
etc.

et I'on aura, comme l'on sait,

A
A, AA, — 2B
AA, =~ BA, + 5C
AA; — BA, 4 CA, — 4D

Supposons de plus

g, = (a—P) + (= —2) + (B—2) + etc.
a, = (a—P) + (¢ —2)* + (B—2) ~+ ete.
oy = (a—B) + (2 —2)° 4+ (B—7%)° ~+ etc.

etc.




DES EQUATIONS NUMERIQUELS.

il est facile de voir que ’on aura

a, = (m—1) A,—2 (gﬁ);__A_ﬂ)

a = (m—1) A;—4 (AA— A 1 6 (BL=A)
;= (m—1) A —6 (A, As— A;) 415 (A A, — A)
(As)*— Ag
e (229
etc,
ou bien
g mA,—z &Z
2
= mA,—4 AA; 4 6 LY

= mA;—6 AA; 415 A A;~20 C_Agl

r F‘
et, en général,

@y = MmAu — 2 A Apu—~)

- 228D N S et
b 2e(en—1) (au—20) ... (u+1) (Aw)*
1E S0 TR AN R T s L

o a1
Les quantilés a,, a,, a,, ete. étant ainsi connues, on aura sur-
le-champ les valeurs des coefliciens a, b,c, etc. de Péquation (D)
par les formules

a,
aaq, —d,
2
ba, — aa, 4+ a;
3
oA g~ ba, + aa; —ay

ra 4

o =

etc.

Ainsi on pourra déterminer dir g
P r directement les coefficiens a, b, c, etc,

2

SCD Lyon 1




10 DE LA'RESOLUTION

de I'équation (D) par ceux de I'équation donnée (B). Pour cela
on cherchera d’abord par les formules ci-dessus, les valeurs des
quantités A,, A,, A,, etc. jusqu’a A,,; ensunite, a 'aide de celles-
ci, on cherchera celles des quantités a,, a,, a;, etc. jusqu’ad
a,, et enfin, par ces derni¢res, on trouvera les valeurs cherchées
des coefficiens @, by c, etc,

9. Remargue. Il est bon de remarquer que I’équation (D)
exprime également les différences entre les racines positives et
négatives de I’"équation (B); de sorte que la méme équation aura
lieu aussi lorsqu’on changera * en =——a pour avoir les racines
négatives (n° 4).

De plus, il est clair que I'équation (D) sera tonjours la méme,
soit qu'on augmente ou qu'on diminue toutes les racines de
Péquation proposée d’une méme quantité quelconque : donc,
si cette équation a son second terme, on pourra le faire dispa-
raitre, et chercher ensuite 1’équation en v; on aura ainsi la
méme ¢équation qu’on aurait eue si on n’avait pas fait évanouir
le second terme; mais ’évanouissement de ce terme rendra tou-
jours la recherche des coefliciens @, b, ¢, ete. un peu plus facile,
parce qu'on aura A ==o0, et par conséquent aussi A,==o0; de
sorte que les formules du numéro précédent, deviendront

A, 0
A, = — 2B
A=93C

= — BA, — 4D

mA,
= mA; + 6%32—2

mA; + 15,4, — 20
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a = ,
2 ad, —

0

ba,—aa, -} a;

A 3

etc.

10. Corollaire 1. Puisque les racines de I'équation.(D) sont
les carrés des différences entre les racines de I’équation .proposée
(B), il est clair que si cette équation (1)) avait tous ses termes
de méme signe, auquel cas elle n’aurait aucune racine réelle
positive, il est elair, dis-je, que, dans ce eas,! les ‘différences
entre les racines de 1"équation (B), seraient toutes imaginaires;
de sorte que cette équation ne pourrait avoir .quune seule racine
réelle, ou bien plusienrs racines réelles et égales entre elles. Si
ce dernier cas a lieu, on le reconnaitra, et on le résondra par
les méthodes connues (voyez aussi plus bas Je chapitre’TI); a

I’égard du premier cas, il suit du n° 6 qu’on pourra prendre
7 i i ;

Corollaire 2. Si Téquation (B)a une 'ou ‘plasicurs couples
q P
de racines égales, il est clair que 1’équation (D ) aura une ou
plusieurs valeurs de v égales & zére} «de sorte quelle ‘seta-alors
divisible une ou plusieurs fois par v. Cette division faite , Jors=
P P ’

qu'elle a lieu, soit I'équation restante dlsposee a reboma de cetlc
manicre :

1 - ay -+ Put 49’ 4=, etc. - av’ ::0 : e (E},

r étant = ou <nm3j; qu'on fasse v =yl, et ordonnant I'équation
par rapport a ¥, on aura :

¥ 2y = oy == o et +fr-—°------CF)

Qu'on’ cherche par les méthodes connues la limite "dés racires
positives de cette équation, et soit /cette limite;, ensorte que Z

e 1 -
surpasse chacune des valeurs positives de ¢ done 7 sera mioindre

A i
que chacune des valeurs positives de jon de v; et par conséquent
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moindre que chacune des valeurs de z*, & cause de v=u* (pro-
bleme précédent).

Done !/_f sera nécessairement moindre qu’aucune des valeurs

de u, c’est-i-dire qu'aucune des différences entre les racines
réelles et inégales de I’équation proposée (B).

Donc, 1° si /Z <1, alors on sera sir que I'équation (B)
n’aura point de racines réelles dont les différences soient moindres
que l'unité : ainsi, dans ce cas, on pourra faire, sans scrupule

o= 1 tne ).

2°. Mais si y/Z==ou > 1, alors il peut se faire qu’il y ait dans
I’équation (B) des racines dont les différences soient moindres
que l'unité; mais, comme la plus petite de ces différences sera

toujours nécessairement plus grande que —7» On pourra toujours

\/

1 r .
prendre A = ou < Vi (numéro cité).

In général, soit k£ le nombre entier qui est égal on immédia~
. 1
tement plus grand que y/Z, et on pourra toujours prendre A = 7e
i sing (U I
ci012. oScholie 1. Quant 4 la . ‘maniére de trouver la limite des
racines; d’une;équation , la plus commode et la plus exacte est
celle de: Newton, Jaquelle consiste & trouver nun nombre dont les
racines de I’équation proposée étant diminuées, 1’équation résul-
tante n’ait aucune variation de SJgue, car alors cette équation
ne pourra - avoir que “des racines negatwes par conséquent le
nombre dont les racines de la proposée auront été diminuées, sur-
passera nécessairement la plus grande de ces racines.
Amsx A pour chercher la hmlte Z des racines de 1'équation

r.'

(F) - —f—af”'-i—ﬂy’““-l—w'g-i-etc-—0,

on'y mettra y+l au lieu de ¥, et ordonnant I’"équation résul-
tante par rapport a y, elle deviendra

P 4 Qy 4+ Ry* 4 Sy? 4-etc. +~y =0,
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dans laquelle

P IFtalr= - Bl—2 4y lr=3 4 ctc. =
Q rlf = o (r—1)al = 4= (r —2) B/ =3 = etc.
R=1LC 0 Poro D) st ete,

S = T_EL__;)ECL.__EQ Ir=3 - etc.

etc.

et il n’y aura qu’a chercher une valeur de Z qui, étant substituée
dans les quantités P, Q, R, etc. les rende toutes positives; en
commencant par la dernitre de ces quantités, laquelle n’aura que
deux termes, et remontant successivement aux quantités précé-
dentes, on déterminera facilement le plus petit nombre entier
qui pourra étre pris pour Z, et qui sera la limite la plas proche
cherchée.

Si on voulait éviter tout titonnement, il n’y aurait qu’a prendre
pour / le plus grand coeflicient des termes négatifs de ’équa-
tion (F), augmenté d’une unité; car il est facile de prouver qu’en
donnant a / cette valeur , les quantités P, Q, R, etc. seront tou-
jours positives.

Cette manitre d'avoir la limite des racines d’une équation queli-
conque, est due, je crois, a Maclawrin; mais en voici une autre
qui donnera le plus souvent des limites plus approchées.

Soient —py" =" — yy"~"—my"~? — elc. les termes négatifs de
I’équation (F), on prendra pour / la somme des deux plus grandes

m n P
des quantités /., /v, v/, etc. ou un nombre quelconque plus
grand que cette somme. Cette proposition peut se démontrer de

la méme maniére que la précédente; ainsi nous ne nous y arré-
terons pas.

Au reste, il faut observer que les limites trouvées de I’une ou
de l'autre de ces deux manitres seront rarement les plus pro-
chaines limites. Pour en avoir de plus petites, on essaiera suc-
cessivement pour Z des nombres moindres, et on prendra le plus

petit de ceux qui satisferont aux conditions que P, Q, R, etc.
soient des mombres posififs.
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13. Scholie 2. Ayant donc trouvé la limite 7 de I"équation
(F), et pris % égal on immédiatement plus grand que y/Z, on

1 . .
fera A = ; (n° 11), et on substituera successivement dans

I’équation proposée , -4 la place de l'inconnue , les nombres o,
T a3 LpiE by

7 T2 o €t les résultats venant de ces substitutions, formeront
une série dans laquelle il y aura autant de variations de signe que
I’équation proposée contiendra de racines réelles positives et iné-
gales, et de plus chacune de ces racines se trouvera entre les denx
nombres qui auront donné des résultats consécutifs de signes diffé-

p A h—4-1
rens; de sorte que si les nombres ;, et —— donnent des résultats

k ke
% : . . h h 1
de signe contraire, il Yy aura une racine entre -, et —_;_—

% 5 par

: ! A
conséquent le nombre entier qui approchera le plus dc;; sera la

valeur enticre approchée de cette racine (n° 2).

Ainsi on connaitra par ce moyen, non-seulement le nombre
des racines positives et inégales de I’équation proposée, mais en-
core la valeur entiere approchée de chacune de ces racines.

Au reste, il est clair quesi 'on trouvait un ou plusieurs résul-
tats égaux a zéro, les nombres qui auraient donné ces résultats
seraient des racines exactes de I’équation proposée.

Pour faciliter et abréger ce calcu], on fera encore les remarques
suivantes :

1°. Si on cherche par les méthodes des numéros précédens la
limite desracines positives de 'équation proposée, il est clair qu’il
sera inutile d’y substituer a la place de I'inconnue des nombres
plus grands que cette limite. En effet, il est facile de voir qu’en
substituant des nombres plus grands que cette limite, on aura
toujours nécessairement des résultats positifs. Ainsi nommant 2 la
limite dont il s’agit, le nombre des substitutions a faire sera égal

1

a Ak, et par conséquent toujours limité.

Tn général, sans chercher la limite 2, il suffira de pousser les
substitutions jusqu’d ce que le premier terme de I’équation on
la somme des premiers termes, s’il y en a plusieurs consécutifs
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avec le méme signe -, soit égale ou plus grande que la somme
de tous les termes négatifs; car il est facile de prouver, par la
méthode du n® 7, qu'en donnant a l'inconnue des valeurs plus
grandes, on aura toujours & Dinfini des résultats positifs.

2°. Au lieu de substituer a la place de I’inconnue z, les frac-
. 3 i T ot
tions 7, 7, etc. on y mettra d abmdﬁ a la place de x, ou, ce

qui revient au méme, on multipliera le coefficient du second
terme par %, celui du troisiéme terme par %%, et ainsi des autres;
et on substituera ensuite 4 la place de x les nombres naturels
0, 1, 2, 5, etc. jusqu’a la limite de cette équation, ou bien
jusqu’a ce que le premier terme ou la somme des premiers,
quand il y en a plusieurs consécutifs avec le méme signe, soit
¢égale ou plus grande que la somme des négatifs ; par ce moyen,
les résultats seront tous des nombres entiers, et les racines de
Péquation proposée se trouveront nécessairement entre les nom-
bres consécutifs qui donneront des résultats de signe contraire ,

ces nombres étant divisés par %, comme nous l'avons va plus
haut.

5°. Soit m le degré de I’équation dans laquelle il s'agit de
substituer successivement les nombres naturels (o e e P
je dis que, d&s que I'on aura trouvé les m -~ 1 premiers résul-
tats, c’est-d-dire ceux qui répondent & x=o0, 1, 2, etc, m, on
pourra trouver tous les suivans par la seule addition.

Pour cela, il n’y aura qu'a chercher les différences des résul-
tats trouvés, lesquelles seront au nombre de m, ensuite les diffé-
rences de ces différences, lesquelles ne seront plus qu’au nombre
de m—1 , et ainsi de suite jusqu'a la différence mime,

Cette derniére différence sera nécessairement constante, parce
que Pexposant de la plus haute puissance de Pinconnue est m;
ainsi on pourra continuer la suite des différences mimes aussi loin
qu’on voudra, en répétant seulement la méme différence trouvée ;
ensuite , par le moyen de cette suite, on pourra, par la simple
addition, continuer celle des différences 17z — rémes et 3 1aide
de celle-ci, on pourra continuer de méme la suite des différences

m — 2'mes, et ainsi de suite, jusqu'd co que I'on arrive a la

premicre suite, qui sera celle des résultats cherchds.
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Il est bon d’observer ici que si les termes correspondans des
différentes suites dont nous parlons, étaient tous positifs, les termes
suivans dans chaque suite seraient tous aussi positifs. Or, puisque
la derniére différence est tounjours positive, il est clair qu’on par-
viendra nécessairement dans chaque sunite a4 des termes tous posi-
tifs; ainsi il suffira de continuer toutes ces suites jusqu’a ce que
leurs termes correspondans soient devenus tous positifs, parce
qu'alors on sera siir que la série des résultats, continuée aussi loin
qu’on voudra, sera toujours positive, et que, par conséquent,
elie ne contiendra plus aucune variation de signe.

Pour éclaircir ceci par un exemple, soil proposée I'équation

2 —63xr+418g=0;

on tronvera d’abord que les résultats qui répondent 4 x=o, 1, 2, 3,
sont 189, 127, 71, 27, d’ot I'on tirera les différences premicres
— 62, — 56, — 44, les différences secondes 6, 12, et la diffé-
rence troisiéme 6; ainsi on formera les quatre séries suivantes:

6 6 6 6 6 6 6, etc.

6 12 18 42, etc.

— 62 — 56 — 44 i 64, etc.
189 127 7% a7 27, etc.

dont la loi est que chaque terme est égal a la somme du terme
précédent de la méme série, et de celui qui y est au-dessus dans
Ja série précédente; de sorte qu'il est tres-facile de continuer ces
séries aussi loin qu’on voudra.

La dernitre de ces quatre séries sera, comme l'on voit, celle
des résultats qui viennent de la substitution des nombres naturels
0, 1, 2, etc. & la place de x dans I’équation proposée ; et comine
les termes de la septitme colonne, savoir:6, 42, 64, 27, sont
tous positifs, il s’ensnit que les termes suivans seront tous aussi
positifs; de sorte que la série des résultats, continude aussi loin
quon voudra, n’aura plus aucune variation de signe.

14. Remarque. On avait déja remarqué que 1’on pouvait trou-
ver la valeur approchée de toutes les racines réelles et inégales
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d’une équation quelconque, en y substituant successivement &
la place de I’inconnue, différens nombres en progression arithmé-
tique; mais cette remarque ne pouvait pas étre d’une grande uti-
lité , faute d’avoir une méthode pour déterminer la progression
que l'on doit employer dans chaque cas , ensorte que l'on soit
assuré qu’elle fasse connaitre toutes les racines réelles et inégales
de I’équation proposée. Nous en sommes heureusement venus a
bout & I’aide du probléme dun° 8, et nous verrons encore ci-aprés
d’autres usages de ce méme probléeme par rapport aux racines égales
et imaginaires.

Au reste, la recherche de la quantité A (n° 11) ne serait point
nécessaire si ’équation proposée n’avait que des racines réelles;
mais les conditions par lesquelles on peut reconnaitre d’avance
la réalité de toutes les racines, lorsqu'elle a lieu dans une
équation donnée, dépendent de 'équation méme des différences,
ou de formules équivalentes. (Voyez la note VIII).

A
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CHAPITRE 1L

De la maniére davoir les racines ézales , et les racines

<

umaginatres des équations.

15. Novs n’avons considéré , dans le chapitre précédent, que
les racines réelles et inégales de I’équation proposée (B); sup-
posons maintenant que cette équation ait des racines égales: dans
ce cas, il faudra (n° 11) que D’équation (D) soit divisible autant
de fois par v, quil y aura de Combinaisons de racines égales deux
a deux; par conséquent il faudra qu’il y ait dans cette équa-
tion (D) autant des derniers termes qui manquent; ainsi on

connaitra par ce moyen combien de racines égales il y aura dans
la proposée. i

Mais on peut s’assurer d’avance si ’équation proposée a des ra-
eines égales, et méme trouver ces racines indépendamment de
I'équation (D)). Car puisque dans le cas des racines ¢gales, on a
nécessairement z=—=o (n° 8) , I’équation (€) du méme numéro don-
nera pour ce cas Y =0; ainsi il faudra que les deux équations
en x, X=o0, et Y=o0, aient lieu en méme temps lorsque =
est égal & une quelconque des racines égales de I'équation (B).

On cherchera donc, par les méthodes connues, le plus grand
commun diviseur des denx polynomes X et Y; et faisant ensuite
ce diviseur égal 4 zéro, on aura une équation qui ne sera eom-
posée que des racines égales de la proposée, mais €levées a une
puissance moindre de lunité,.

Soit R le plus grand commun diviseur de X etde Y, et X’ e
quotient de X divis¢ par R, il est facile de voir que I'équation
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X' = o contiendra toutes les mémes racines que I'équation propo-
sée X=0, avec cette différence que les racines multiples de cette
équation, seront simples dans I’équation X' = 0; ainsi I’équation
X’'=o0 sera dans le cas des méthodes précédentes.

On peut encore, si 'on veut, trouver deux équations séparées ,
dont I'une contienne seulement les racines égales de 1’équation
X =o0, et dont ’autre contienne les racines inégales de la méme
¢quation. Pourcela, il n'y aura qu’i chercher de nouveau le plus
grand commun diviseur des polynomes X’ et Y ; et nommant ce
diviseur R’, on prendra le quotient de X’ divisé par R’, lequel
étant nommé X', on fera ces deux équations X"'=o, et R' =o.

La premicre contiendra seulement les racines inégales de 1’équa-
tion X=—o0, etla seconde contiendra seulement les racines égales
de la méme équation, mais chacune une seule fois; de sorte que
les denx équations X'==o0, et R"=o0, n’auront que des racines
inégales, et par conséquent seront susceptibles des méthodes du
chapitre précédent.

16. Connaissant ainsi le nombre des racines réelles, tant iné-
gales qu'égales, de I’équation proposée , si ce nombre est moindre
que le degré de 1'équation , on en conclura que les autres ra-
cines sont néeessairement imaginaires.

En général, pour que 1’équation (B) ait toutes ses racines
réelles, il faut que les valeurs de « soient réelles aussi; donc il
faudra que les valeurs de 4* ou de v soient toutes réelles et po-
sitives; par conséquent, I’équation (D) du n° 8 doit avoir toutes
ses rucines réelles positives; donc il faudra, par la régle connue,
que les signes de cette équation soient alternativement positifs et
négatifs; de sorte que si cette condition n’a pas lieu, ce sera

une marque stre que I’équation (B) a nécessairement des racines
imaginaires.

Or, on sait que les racines imaginaires vont toujours en nombre
pair, et qu’elles peuvent se mettre denx a deux sous cette forme 5
a4 By —1,a—pB y—1, a et B étant des quantités réelles (*);

(*) Voyez la note IX.
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donc on aura z===283/—1, et par conséquent v=— 4*; d’olt
Von voit que I’équation (D) aura nécessairement autant de ra-
cines réelles négatives qu'il y aura de couples de racines imagi-
naires dans 1’équation (B).

Donc, si on fait y=—1, ce qui changera ’équation (D) en
celle-ci:

W = a4 b~ e % - etes ==0..... (G)

cette équation aura nécessairement autant de racines réelles po-
sitives qu’il y aura de couples de racines imaginaires dans I’équa-
tion (B).

17. Il suit de & que, pour avoir la valeur des racines imagi-
naires de I’équation (B), il n’y a qu’a chercher les racines réelles
positives de I’équation (G). En effet, soient w', »", w", ete. ces

v
g

. A W' w
racines , on aura d’abor L, VT’ etc. pour les valeurs

2

de f; ensuite, pour trouver les valeurs correspondantes de o, on
substituera, dans I’équation (B), a—@y/—1, a la place de =z,
et on fera deux équations sépardes des termes tous réels, et de
ceux qui seront multipliés par /—1; de cette maniére , on aura
deux équationsen a de cette forme:

a™ - Pa"™ - Qa™™* 4 etc. =
man—* == par—* =4 gam—® -+ etc. =

dans lesquelles les coefficiens P, Q, etc. p, g, etc. seront donnés
en a, b, c, etc. eten B.

Donc, si on donne & 8 quelqu'une des valeurs précédentes,
il fandra nécessairement que ces deux équations aient lien en
méme temps, et par conséquent il faudra qu’elles aient un divi-
seur commun. On cherchera donc leur plus grand commun divi-
seur; et le faisant égal 4 zéro , on aura une équation en o et 3, par
laquelle, B étant connu, on trouvera o.

Tl est bon de remarquer que, si toutes les valeurs de f8 tirées
de 1"équation (G) sont inégales entre elles , alors a chaque valeur
de @ il ne pourra répondre qu'une seule valeur de «; donc, dans
ce cas, les deux équations (H) ne pourront aveir qu’une seule




DES EQUATIONS NUMERIQUES. 21

racine commune; et par conséquent leur plus grand commun di-
viseur ne pourra étre que du premier degré.

On poussera donc la division jusqu’a ce que P'on parvienne &

un reste oll & ne se trouve plus qu’a la premiére dimension , et

on fera ensuite ce reste égal a zéro; ce qui donnera la valeur cher-
chée de «.

Mais si, parmi les valeurs de 2 tirées de 1’équation (G) il y
en a, par exemple, deux égales entre elles, alors, comme &
chacune de cés valeurs égales de 2, il peut répondre des valeurs
différentes de o, il faudra qu’en mettant cette valeur double de
3 dans les équations (H), elles puissent avoir lieu par rapport &
I'une et I'autre des valeurs de « qui y répondent; ainsi ces deux
¢quations auront nécessairement deux racines communes, et par
conséquent lenr plus grand commun diviseur sera du second degré.
Il faudra donc, dans ce cas, ne pousser la division que jusqu’a
ce que 'on arrive & un reste ona se trouve a la seconde dimen-
sion senlement ; et alors on fera ce reste égal a zéro, ce qui don-
nera une équation du second degré, par laquelle on déterminera
les deux valeurs de «, lesquelles seront nécessairement toutes deux
‘réelles.

De méme, s'il y avait trois valeurs égales de 8, il faudrait,
pour trouver les valeurs de a qui répondraient i cette valeur triple
de 3, ne pousser la division que jusqu’a ce que I'on parvint &
un reste ou la plus haute puissance de « fiit la troisiéme; et alors
faisant ce reste égal & zéro, on aurait une équation en a du troi-
sieme degré , laquelle donnerait les trois valeurs réelles de «, cor-
respondantes a la méme valeur de (3, et ainsi de suite,
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CHAPITRE IIL.

Nouvelle méthode pour approcher des racines des équations
RUINEFIGUES.

18, SOIT I’équation
A2" 4= Bxn=* 4- Cax"—* 4-etc. - K=o...... (a)

et supposons qu'on ait déja trouvé par la méthode précédente , ou
utremient, 1a valeur entitre approchée d’une de ses racines réelles
et positives; soit cette premiére valeur p, ensorte que Pon ait

.E'r> petxp--1, on fera x=p -{-;-, et substitnant cette va-

leur dans I'équation proposée, & la place de 2, on aura, apres
avoir, multipli¢ toute I'équation par y™, et ordonné les termes par
rapport & y , une équation de cette forme :

Alye LBy "~ - Cyn—* J~etc. +~ K —o...... ()

Or, comme (hyp.), §>o et <1, onauray> o; donc I’dquation

() avra nécessairement au moins une racine réelle plus grande
que Punité.

On cherchera donc , par les méthodes du chapitre Ter, 1a valeur
entiere approchée de cette racine; et comme cetlte racine doit
Elre nécessairement positive , il suflira de considérer y comme po-
sitif (n° 4).

Ayant trouvé la valeur entitre approchée de y, que je nom-

. . 1 .
merai ¢, on fera ensuite y =g -, et snbstitnant cette valeur

de y dans I’équation (4), on aura une troisieme équation en z de
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cette forme :

A'zr - B'z» = - Czn =2 fete. =K' =o0...... (¢)

laquelleaura nécessairement, an moins, une racine réelle plus grande

que l'unité, dont on pourra trouver de méme la valeur entiere
approchée.

r 1
Cette valeur approchée de z, étant nommée r, on fera z=r- =

et substituant, on aura une équation en z, qui aura an moins une
racine réelle plus grande que 'unité, et ainsi de suite.

En continuant de la méme manitre , on approchera toujours de
plus en plus de la valeur de la racine cherchée ; mais s'il arrive
que quelqu'un des nombres p, g, etc. soit une racine exacte ,
alors on aura z =p, ouy =g, etc. et 'opération sera terminée’;
ainsi, dans ce cas, on trouvera pour x une valeur commensurable.

Dans tous les autres cas, la valeur de la racine sera nécessaire-
ment incommensurable, et on pourra seulement en approcher aussi
prés qu’on voudra.

19. Si I"équation proposée a plusieurs racines réelles positives,
on pourra trouver, par les méthodes exposées dans le chapitre Ter
Ia valeur entitre approchée de chacune de ces racines ; et nom-
mant ces valeurs p, p’, p”, ete. on les emploiera successivement
pour approcher davantage de la vraie valeur de chaque racine
il fandra seulement remarquer,

¥

1°. Que si les nombres p, p’, p etc. sont tous différens Fun
de I'autre , alors les transformées (&), (c), ete. du numéro pré=
cédent, n’auront chacune qu’une seule racine réelle et plus grande
que P'unité; carsi, par exemple, I'équation (&) avait deux racines
réelles plus grandes que 1'unité, telles que ¥’ et y", on aurait-donc:

1
Ea=p +57 etxe=p +j, de sorte que ces deux valeurs de z au-~

raient la méme valeur enti¢re approchée p contre I’hypothése & il
en serait de méme si I’équation (¢), on quelqu’une des suivantes ,
avait deux racines réelles plus grandes que 1'unité.

De 1a il s’ensnit que, pour trouver dans ce cas les valeurs en-
tieres approchées g, 7, etc. des racines des équations (6), (¢}, etc..
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il suffira de substituer successivement a la place de y, z , ete. les
nombres naturels positifs, 1, 2, 3, etc. jusqu’a ce que l'on trouve
deux substitutions consécutives qui donnent des résultats de signe
contraire (n° 6).

2°. Que ¢’il y a deux valeurs de x qui aient la m&me valeur
entiere approchée p , en employant cette valeur, 1I’équation (4)
aura aussi deux racines plus grandes que l'unité, et si lear
valeur entitre approchée est la méme, I'équation (¢) aura encore
deux racines plus grandes que l'unité, et ainsi de suite, jusqu’a
ce que l’on arrive & une équation dont les deux racines, plus
grandes que l'unité, aient des valeurs entitres approchées diff¢-
rentes ; alors chacune de ces deux valeurs donnera une suite parti-
culi¢re d’équations qui n’auront plus qu'une seule racine réclle
plus grande que I'unité.

Fn effet, puisqu'il y a deux valeurs différentes de x qui ont la
méme valeur entiére approchée p, ces deux valeurs seront repré-

sentées par p —l—yl—', de sorte qu’'il faudra que y ait nécessairement

deux valeurs réelles plus grandes que l'unité : et, si ces deux
valeurs de y ont la méme valeur approchée ¢, il faudra de nou-

5 . 1 : e
veau qu'en faisant y = ¢ -~ ~» Z ait deux valeurs différentes plus
grandes que l'unité, et ainsi de suite,

Mais, si les valeurs entiéres approchées de y étaient différentes,
alors, nommant ces valeurs ¢ et ¢', on ferait successivement

S g -|-—-1Z- et yi==gf -+-zl—, et il est clair que z, dans Iune et
I'autre de ces deux suppositions, n’aurait plus qu’une seule valeur

réelle plus grande que l'unité; autrement les valeurs de y, au
lien d’étre seulement doubles, seraient triples ou quadruples, etc.

Donc, quand on sera parvenu a une transformée dans les deux
racines, plus grandes que I'unité, auront des valeurs entiéres dif-
férentes , on sera assuré que les autres transformées résultantes
de chacune de ces deux valeurs, n’auront plus qu’une seule ra-
cine plus grande que l'unité. Quant i la maniére de trouver les
valeurs entieres approchées p, ¢, ete. lorsqu’elles répondent & plus
d’une racine , voyez ci-aprés , Chap. VI, art. 1v,




DES EQUATIONS NUMERIQUES. 25

On peut faire des remarques analogues sur le cas ol il y aurait
dans ’équation (@) trois racines, ou davantage, qui auraient la
méme valeur entiére approchée.

20. Nous avons suppesé dans le n° 18 que les racines cher-
chées étaient positives; pour trouver les négatives, il n’y aura
qu’a mettre — x a la place de x dans I’équation proposée, et on
cherchera de méme les racines positives de cette derniére équation :
ce seront les racines négatives de la proposée (n° 4).

Quant avx racines imaginaires qui sont toujours exprimées par
a =+ By/— 1, nous avons donné, dans le chapitre IT, le moyen de
trouver les équations dont < et /3 sont les racines; ainsi il n’y aura
qu’a chercher les racines réelles de ces équations, et I'on aura la
valeur de toutes les racines imaginaires de ’équation proposée.

21. Pour faciliter les substitutions (n°® 18) de p +yl’ au lieu

de x, de ¢ - é, au lieu de y, etc. il est bon de remarquer que
les coefficiens de la transformée (%) peuvent se déduire immédia-
tement de ceux de I'équation (@), en cette sorte :

A’ Ap™ 4 Bpm—* 4= Cp"—* 4- Dp"—% - etc.

B mAp™=*! 4~ (m—1)Bp"—* - (m — 2) Cp™—* - efc.

i~ m(m—1) s (m—1)(m—2) ey

C =———F—Ap"=2 + 3 Bp~=3 4 etc,

elc.

On aura de méme ceux de la transformée (c¢) par ceux de la
transformée (£) , en mettant dans les formules précédentes ¢ & la
place de p, A", B", C’, etc. 4 la place de A’, B', C, efc. et
A, B, C, etc. & la place de A, B, C, etc. et ainsi de suite.

De 14, il est évident que le premier coefficient A’ ou A’, etc.
ne sera jamais nul, & moins que le nombre p ou g 5 etc. ne soit
une racine exacte, auquel cas nous avons vu que la fraction
continue se termine & ce nombre (n° 18). En effet, si A’ = o,
ou A'=o0, efc. on aura y = @ , ou z = 3 donc pp =g
ou y =g¢q, etc.

22, Soient done p, g, 7, s, #, ete. les valeurs entidres appro-

4
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chées des racines des équations (@), (&), (¢), etc. ensorte que
tlom ait

m=p+;7, _y=q+%, z-—*r—]— ,etc.

substituant successivement ces valeurs dans celle de #, on aura

it + perving i)
+ s & etc.

Ainsi la valeur de x, c’est-a-dire de la racine cherchée, sera

exprimée par une fraction continue. Or, on sait que ces sortes

de fractions donnent toujours I'expression la plus simple, et en

méme temps la plus cxacte qu'il est possible d’un nombre quel-

conque , rationnel ou irrationnel.

Huygens parait étre le premier qui ait remarqué cette proprlete
des fractions continues, et qui en ait fait usage pour trounver les
fractions les plus simples , et en méme temps les plus approchantes
d’une fraction quelconque donnée. (Foyez son Traité de Automato
planetario.)

Plusieurs habiles géométres ont ensuite développé davantage
cette théorie, et en ont fait différentes applications ingénieuses et
utiles ; mais on n’avait pas encore pensé, ce me semble, a s'em
'sarwr dans la résolution des équations.

23, Maitenant , si on réduit les fractions continues-

P = : e
r? P+q’ F+q+-}, etc.

en fractions ordinaires, on aura en faisant
P o X
ga -+ 1, <3 ge =g
rB 4o, v TR+ o
P =)+ @
elc.

on aura, dis-je, cette snite de fractions particulitres:

£ 4 &
z? "571 ,)_D:n 7 ete.
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lesquelles seront nécessairement convergentes vers la vraie valeur
de x, et dont la premiere sera plus petite que cette valeur, la
seconde sera plus grande, la troisitme plus petite, et ainsi de
snite; de sorte que la valeur cherchée se trouvera tovjours entre
deux fractions consécutives quelconques: c’est ce qu’il est aisé
de déduire de la nature méme de la fraction continue, d’ou celles-ci
sont tirées.

Or, il est facile de voir que les valeurs de «, 8, 5, etc. et
o, B, 7 ete. sont toujours telles que Ba'—af=1, By/— 9 f'=1,
dy'—rd’=1, etc. d’onr il sensuit,

Que ces fractions sont déja réduites a leurs moindres termes ;
car si 3 et 3, par exemple, avaient un commun diviseur antre
que Punité, il faudrait, en vertu de Péquation B)'—yf'=1, que
Yunité fit avssi divisible par ce méme diviseur.

2°, Qu’on aura

£
El

1 B

—— =

- A
a a'f

B
o i ) —_— =TT etc.
3 ¥ Lo e

de sorte que les fractions 7 5,, %, etc. ne peuvent jamais diffé-

rer de lavraie valeur dexque d‘une quantité respectivement moindre
1 1
que 775 g ,y, etc. d’on il sera facile de juger de la quantité

de I approx;mation.
En général, puisque £ > o', ' >f, etc. on aura
1 1

1 1
,Q > ,B, Bﬂ > é,_y-‘, etc-

d’ou I’on voit que Ierreur de chaque fraction sera toujours moindre

que 'unité divisée par le carré du dénominateur de la méme
fraction.

5°. Que chaque fraction approchera de la valeur de x, non-
seulement plus que ne fait aucune des fractions précédentes , mais
aussi plus que ne pourrait faire aucune autre fraction quelconque

qui aurait un meindre dénominateur. I'n effet, si la fraction !—A—,,

par exempie, approchait plus que la fraction Z T % éla'll > Ko
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- - - r A J
il faudrait que la quantité :—} se trouvdt entre ces deux ;—’-, et 5

It
: ‘U. :V J\ 7 - 1 % ') ffi .
donc e <% R et >> o; done p.y’-—--,wy<év g8 I
et = o0; ce quine se peut, puisquey, 3/, #, i’ sont des nombresentiers,

24. Les fractions 5- - EGF ) %— , etc. peuvent étre appelées frac—

tions principales, parce qu'elles convergent le plus qu’il est pos-
sible vers la valeur cherchée; mais, quand les nombres p, ¢, 7, etc.
different de l’unité, on peut encore trouver d’autres fractions

convergentes vers la méme valeur, et qu’on appellera, sil’on veut,
fractions secondaires.

Par exemple, si 7 est > 1, on peut entre les ﬁ'actlons et

qui sont toutes deux moindres que la valeur de @, insérer aulan!:
de fractions secondaires qu’il y a d’unités dans » — 1, en mettant
successivement 1, 2, 3, etc. r— 1, au lien de r. De cette
maniere ; a cause de 3 =78 -~ a, et 9’ = rf’ - &/, on aura
cette suite de fractions

3 B+ a 2B + 2 38+ a o5 8+ a
«’ F+d’ o +d? 5844’ T F L

¥ ¥ 2 . - - . L
dont les deux extrémes sont les deux fractions principales. =5
et dont les intermédiaires sont des fractions secondaires.

Or si on prend la différence entre deux fractions consécutives
28 + o " 364 =
2__}27_T_¢.r € 5,6’—}- I 3

1 .
trouvera GGF F2) GEFa) de sorte que cette différence sera

toujours positive , et ira en diminuant d’une fraction i Pautre ;

quelconques de cette suite;, comme entre o

d’ou il s’ensuit que comme la. derniére fraction % est moindre que

la vraie valeur de la fraction continue, les fractions dont il s’agit
seront toutes plus petites que cette valeur, et seront en méme temps.
convergentes vers cette méme valeur.

On fera le méme raisonnement par rapport a toutes les autres
fractions prmc1pa[es > et si on ajoute & ces fractions les deux
fractions ¢ et § dont la premitre est toujours plus petite, et dont
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la seconde est plus grande que toute quantité donnée , on pourra
former deux séries de fractions convergentes vers la valeur cher-
chée, dont V'une contiendra toutes les fractions plus petites que
celte valeur , et dont ’autre contiendra toutes les fractions plus
grandes que la méme valeur.

Fractions plus petites,

> 3 P P
T3 = elC. oo WO R 2| e
PR ¢ 1 (az.’

)

28 4 « 53+‘f, e{.c.%.-.(
T -4

i

.y
Y

2(5"+d.’, 551_'_“
2d 449 3849 td 4
2¢" +9 " B9/’ td’ 49/

)
3y

H

ete.

Fractions plus grandes.

S, s RRERIDR I Vele £
o ZH1’? L+’ BL 1’ U g+ \F
¥+ B 27+é 39 <+ 8 dic sy + 8 (i)
’}’-—'—-,@” 2}f+ﬁlj 5)(_!_‘;/, L3 s—y,+£,_..' d" P
etc.

Quant & la nature de ces fractions, il est facile de prouver ;
comme nous l'avons fait par rapport aux fractions principales,
1°. que chacune de ces fractions sera déja réduite & ses moindres
termes; d'ou il s’ensuit que comme les numérateurs et les déno-
minateurs vont en angmentant , ces fractions se trouveront tou~
jours exprimées par des termes plus grands & mesure qu’elles s’éloi~
goeront du commencement de la série. 2°. Que chaque fraction
de la premiére série, approchera de la valeur de  plus qu'aucune:
autre fraction queclconque qui serait moindre que cette valeur,
et qui aurait un dénominateur plus petit que celui de la mé&me
fraction ; €t que , de méme , chaque fraction de la seconde série
approchera plus de la valeur de x que ne pourrait faire toute
autre fraction qui serait plus grande que cette valeur, et qui aurait
un dénominateur plus petit que celui de la méme fraction.

En effet, s'il y avait une fraction comme % plus petite que la:
e )
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valeur dé z, et en méme temps plus approchante de eetfe valeur
que la fraction %}:——:, par exemple, en supposant 33 + o' > ¢,

o

il faudrait, ( & cause que la fraction—g; est plus grande que la
valeur dont il s'agit) que la quantité £ se trouvat entre les deux

~
G TR Uy $5)00 38 + 2 sl
quantités L7 et 73 donc la quantité T BEEE devrait étre
B BBHa . Be—af 2B g g 5. oF: o2
<7 —3Ftd <7 GEF ) < FGEEY) done il faudrait que

w(3f o' )—p (3B 4a) fit < %,: < 13 ce qui ne se peut.

Au reste, il peut arriver qu'une fraction d’une série n’approche
» 1 P

pas si prés qu'une aufre de I'autre série, quoique concue en

termes moins simples ; mais cela n’arrive jamais quand la frac-

tion qui ‘a le plus grand dénominateéur, est une fraction princi-
pale (n°23).
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_

CHAPITRE 1YV.

Applzcatzon des DMéthodes- précédentes & quelques
Exemples.

=ab, J E ‘prendrai pour premier exemple 1’équation qué Newtor
a résolue par da méthode, savoir :

2P — 22 — 5 = o,

Je commence par chercher par les formules du n° 8 Iéquation
en v qui résulte de cette équation; je fais donc m =3, A =o,

B=—a2, Cx=5; j’aurﬁin:zig-_—:S-- Ae=05 A, =4 Kj=af,

A;=38, A;=>50,A;=091;donc a,=12, q, == 72, A3==—1497'

etdelia—i1a, b= 56, c=—0643; de sorte que l’équation:
cherchée sera

v — rzvt 4 36u - 643 =

Comme cefte équation n’a pas les signes alternativement positifs:
et négalifs, j’en conclus sur-le-champ que V’éguation proposée a:
nécessairement deux racines imaginaires, et par consaquent une'

seule réelle (n® 16).

Ainsi les nombres a substituer & la place de x, seront les nombres:

naturels o, 1, 2, 3, ete. (11 6).

Je suppose d’aberd x positif, et je.cherche:la limite des valeurs

de x par les méthodes du n° 12, je trouve ¢/ > -f-\/ Bis 3. ainkk 5

sera la limite cherchée en ncmbles entiers; de sorte qu'il suﬂira-
de ‘faire successivement z=o0,=71,=2,=73; ce qui donnera
ees vésultats : — 5, —6, —'1, 4-16 3 d’olt I'on voit quela racine
réelle: de 'I’équation proposée, sera- entre les nombres 2.et-3; ‘et
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quainsi 2 sera la valeur entitre la plus approchée de cette racine
(nesas).

Je fais maintenant , suivant la méthode du chapitre III,

TE= 3 +yl’ j’ai, en substituant et ordonnant les termes par rap-

port & y, I’équation
y*=—10)* — 6y — 1 =0

dans laquelle j’ai changé les signes pour rendre le premier terme
positif,

Cette équation aura donc nécessairement une seule racine plus
grande que l'unité (n° 19); de sorte que pour en trouver la
valeur approchée, il n’y aura qu’a substituer les nombres o, 1,
2, 3, elc. jusqu’a ce que I'on trouve deux substitutions consécu-
tives qui donnent des résultats de signe contraire.

Pour ne pas faire beaucoup de substitutions inutiles, je remarque
quen faisant y = o, j’ai un résultat négatif, et qu'en faisant
y =10, le résultat est encore négatif; je commence donc par le
nombre 10, et je fais successivement y = 10, =11, etc. je trouve

~d’abord les résultats —61, 454, etc. d’olt je conclus que la valeur
approchée de y est 10; donc ¢ = 10.

Je fais donc y = 10 ; , j'aurai I’équation

612 — g4z* — 20z — 1 = 0

et supposant successivement z==1, =2, etc. j'aurai les résultats
~— 54, 4171, etc. donec r = 1.

. 1 . .
Je fais encore z = 1 - -, Jaurai

541 4= 25u* — 8gu — 61 = o;

?

et supposant z = 1, =2, etc. j’aurai les résultats £ 7 —-293, etc.
donc s =1, et ainsi de suite.

En continnant de cetle maniére , on trouvera les nombres 2, 10,
1,1,2,1,3,1,1, 12, etc, de sorte que la racine cherchée sera
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exprimée par cette fraction continue '

1
:c=2+10+1 ]
5 1+__.__

L F

d’oix on tirera les fractions (n° 23)

1
4

3 3r a3 44 1ixr 155 596 93r 1307 16415

T n w B g mE Wy g qa% Oic.
lesquelles seront alternativement plus petites

et plus grandes que
la valeur de z.

La dernitre fraction 16415

7837 est plus grande que la racine cherchée;

mais I'erreur sera moindre que (_78%ﬁ (n° 23, 2°.), c’est-a-dire

moindre que 0,0000000163 ; donc , si on réduit 1a fraction 26415

7837
en fraction décimale, elle sera exacte jusqu’a la septidme déci-
male : or, en faisant la division, on trouve 2,0045514865. .. .,

ainsi la racine cherchée sera entre les nombres 2,09455149 et
2,09455147. .

Newton a trouvé par sa méthode la fraction 2,00455147 (voyez
sa Méthode des suites infinies); d’olt T’on voit que cette méthode

donne dans ce cas un résultat fort exact: mais on aurait tort de
se prometire toujours une pareille exactitude.

26. Quant aux deux autres racines de la méme équation, nous
avons déja vu qu’elles doivent étre imaginaires : néanmoins , sj

on voulait en trouver la valeur, on le pourrait par la méthode
du n° 17, j

Pour cela, on reprendra I'équation en v trouvée ci-dessus, et

eny changeant v en — a,

et changeant ensuite tous les signes,
on aura

WP = 1200 - 36 — 643 = o,

et il ne s'agira plus que de chercher une racine ré
de cette équation. Or,

elle aura nécessairement
la valeur entitre la plus

elle et positive
puisqu’elle a son dernier terme  négatif,

une telle racine, dont on pourra trouver
approchée par la substitution successive

5
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des nombres naturels o, 1, 2, 3, ete (n° 3). Fn effet, en faisant
w=—1>5, on aura le ré:ultat —38, et en faisant w=6, on aura
-+ 221 ; ainsi la valeur entiére la plus approchée de la racine po-
sitive de cette équation , sera 5.

% 1 .
On fera donc maintenant w =5 -, eten substituant, on aura,
aprés avoir changé les signes,
381 — 23 14* — 27U — 1 = 0.
Faisant successivement u=—o0, I, 2, ete. , on trouvera pour u=—=~6
et u=nnles résultats =271, 1525 donc 6 sera la valeur en-
tiére approchée de u.
1 ’ .
On fera donc u:ﬁ—-}-}, et l'on aura en substituant et chan-
geant les signes;
2712%— 13052* — 4532 = 38 =o0.
Tn faisant successivement z=o0, 1, 2, etc..on trouvera des ré-
sultats négatifs jusqu'a la supposition de x =6, qui donne 8837
pour résultat; de sorte que 5 sera la valeur entidre approchée de z.

1 . r .
On fera donc x=25 —}-)—, substituant et réduisant, on aura

1053y* — 6822y* — 2760y — 271 =0,
et I’on trouvera 6 pour la valeur approchée de y, et ainsi de snite.
De cette maniére, on approchera de plus.en plus de la valeur
de w, laquelle se trouvera exprimée par la fraction continue:

1
= I
5+ —
+o 4 ete.
d’ott Von tire ces fractions particuliéres

2&’:5—.—%——;

5 3r ., 160 . gor :
';, ‘E"-- 3| - ;5;? Etc.

Vi,

Connaissant ainsl w, onaura (n° 1 B ainsi on connaifra .
2

o )
On substituera maintenant a8 v/ —1, 4 la place de = dans
I’équation proposée; et faisant deux ¢équations séparées des termes
it réels, et de'ceux qui sont affectés de y/—r1, on aura les deux
£quations.
ad — (3B* 4-2) o —5=0,
Ba? == 32 — 2 == 0.
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On cherchera le plus grand commun diviseur de ces deux équa-
tions, et on poussera seulement la division jusqu’d ce que Von
arrive a un reste ou o ne se trouve qu'a la premiére puissance

. =0 8
(numéro cité); ce reste sera — f’;"ﬂt —5, lequel étant fait

=0, donnera
Ty
4(28 +1)
Ainsi on aura la valeur des deux racines lmaginaires ¢ -4 By/—g,
et «—By/—1 de I’équation proposée.

o=

27. Prenons pour second exemple 1’équation

=727 =o0.

On aura encore ici m=3, et par conséquent n=3; ensuife
A=0;, B=—7, C=—7; dot A,=—o0, A, = 4 Ag==rer21,
A,=098, As=—245, A;=—=2833; et de 14, a4, =42, a,—882,
a; =18606g, et enfin a=42, b=441, c=
I’équation en v sera

v} — 42v* 4 4410 — jg=o.

Puisque les signes de cette ¢quation sont alternatifs, c’est-une
marque que la proposée peut avoir toutes ses racines réelles (n" 16);
et comme d’ailleurs cette équation n’est point divisible par u, il

s’ensuit que ’équation en x n’aura point de racines égales (n° 15),

493 de sorte que

% 1
On fera maintenant (n° 11) v =5 et ordonnant 'équation par
rapport a y, on aura

oyt Gy —i=o.

Le plus grand coeflicient négatif étant 9, on pourrait prendre

Z=r10 (n°12); mais on peut trouver une limite plus rapprochée

en cherchant le plus petit nombre entier qui rendra positives ces

trois quantités
P lip Jgep gy

31* —18) 4 22

3 — g
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et on frouvera que /=g satisfait 4 ces conditions; de sorte qu’on
aura =3 (n° 11), et par conséquent A =21,

On mettra donc (n° 13, 2°.) dans 1’équation proposée > & la
place de x, ce qui la réduira 3 celle-ci:

&’ — 652 +4-18g =0,

dans laquelle il n’y aura plus qu substituer les nombres natu-
rels o, 1, 2, etc. & la place de =. Or, suivant la méthode du
n® 15(3%.), on trouve que la série des résultats ne contient que
deux variations de signes , lesquelles répondent & x =4, 5, 6;
de sorte que I’équation proposée n’aura que deux racines posi-
tives, lesquelles tomberont, 1'une entre les nombres 2 et 2,0k
I'autre entre les nombres $ et &5 d’oti on voit que la valeur en-

tiere la plus approchée de 1'une et de Iautre, sera 1 (n2 9}

Faisons maintenant z négatif pour avoir aussi les racines néga-
tives (n° 4), et I'équation se changera en

Z—qx—r7=o0;

laquelle ayant son dernier terme négatif, anra surement une ra-
cine positive (n° 3), et il est clair qu’elle n’en aura qu’une seule,
puisque nous avons déji trouvé les deux autres; ainsi on pourra
d’abord trouver la valeur entitre approchde de ceite racine , en
substituant & la place de « les nombres o, 1, 2, ele, jusqu’i ce
que l'on rencontre deux substitutions qui donnent des résul-
tats de signe contraire (n° 3): or, on trouve que ces substitu-
tions sont =3 et x =4; de sorte que 3 sera la valeur entitre
la plus approchée de x dans 1’équation précédente, et par consé-
quent de — x dans la proposée.

oV Alyant ainsi trouyé que ’équation a trois racines réelles, deux
positives et une négative , et ayant trouvé en méme temps leurs
valeurs entieres approchées, on pourra approcher autant qu’on vou-
dra de la vraie valeur de chacune d’elles par la méthode du cha-
pitre ITI.

Considérons d’abord les racines positives, et faisons dans I’équa-
P ) q
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tion 2° — 7 —-7=o, x=1-+-y£, elle deviendra celle-ci:

_}"3""4.}”'*'5.7'""1:0:

laquelle, & cause que 1 est la valeur approchée de deux racines, anra
nécessairement (n° 19, 2°.) deux racines plus grandes que 'unité,
J'essaie d’abord sije peux trouver les valeurs approchées de ces
deux racines par la substitution des nombres entiers 0, 1, -2 ete:
et comme il n’y a que le terme 4 y* de négatif, il suffira (0%23,/1%.)
de pousser les substitutions jusqu’a ce que 'on ait y* = ou > 4y*;
c’est-a-dire jusqu’a ¥ = 4: or, en faisant ¥Y=o0,1,2,3,4,jai
les résultats 1, 1, —1, 1, 13; d’olt je conclus que les racines cher-
chées sont, 1'une entre les nombres 1 et 2, et ’autre entre les nom-
bres 2 et 3 ; de sorte que les valeurs approchées de y seront 1 et 2.

5 .
On fera donc, 1% y =1 4 ~, et 'on aura 2'—2z*—z--1=0,

équation quin’aura plus qu’une racine réelle plusgrande que I'unité
(n® 19, 2°.); ainsi on supposera snccessivement z — 1 » 2, ete,
jusqu’d ce que Pon trouve deux substitutions consécutives qui
donnent des résultats de signe contraire : or , on trouve que z=2

donne —1, et z=13 donne —+ 73 donc 2 sera la valeur entiére
approchée de z.

1 . ;
On fera done z=24=, et substituant, 'on aura, en chan-
173

geant les signes, #° — 3u* — 4y — 1 = 0.

On supposera de méme z=—1, 2, etc. et ’on trouvera que la
valeur enti¢re approchée de # sera 4.

On fera =1 +$, et ainsi de suite,
1 . v . .r
2° On fera y =2 =+, et substituant dans I’équation précé-
dente en y, on aura, aprés avoir changé les signes,
z?—{-z’-——zz-—-l:o;

cette équation n’aura, comme la précédente en z, qu'une seule
racine réelle plus grande que 'unité; de sorte qu'il n’y aura qu’a
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faire z=1, 2, efc.ce qui donne les résultats —1, 75 d’oli l'on
conclut que 1 est la valeur entiére approchée de z

Asw

1 * i
On fera donec z=1 +-, et I'on awra, en changeant les signes,

W — 3 —fu —1=o0,

d’oul’on trouvera, de la méme maniére que ci-dessus, que la va-
leur entitre approchée de u sera 4.

. . 1 ¥ < .
Ainsi on fera 2124—}-;, et ainsi de suite.

Donc les deux racines positives de I’équation proposée seront,

.2:=1—]-1 1

1 1
4 + etc.

1+

1

1+

1
2 T

4 - ete,

D’ou l'on tirera, si 'on veut, des fractions convergentes, comme
dans l'exemple précédent (n% 23 et 24).

Pour trouver maintenant la valeur approchée de la racine néga-
tive, on reprendra I'équation 2* —r7xr—7 =0, dans laquelle on
a déja trouvé que la valeur entiére approchée est 3; ainsi on fera

1 . .
P —— -|-)-, » ce qui donnera, en changeant les signes,

ys—:zo_y‘-—gy—_-1=0;

et comme cette équation ne peut avoir qu'une seule racine réelle

plus grande que 1 (n°19, 2°.), on en trouvera la valeur appro-
chée en faisant y=1, 2, ete. jusqu’a ce que I'on rencontre deux
résultats consécutifs de signe contraire, ce qui arrivera lorsque
¥ =20, 21; de sorte que la valeur dont il s’agit sera 20.

On fera donc y=2o+:;, etc.

De cette maniere, la racine négative de I’4quation proposée sera

1
Lo e L s 1

20 + 5T ete.

SCD Lyog 1
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CHAPITRE V.

Sur les racines imaginatres.

ARTICLE PREMIER.

Sur la maniére de reconnailre si une éguation a des racines

Imaginaires.

28. J’AI donné dans’le n° 8, des formules générales pour dé-
duire d’une équation quelconque, une autre équation dont les
racines soient les carrés des différences entre les racines de I’équa-
tion proposée. Or, si toutes les racines d’une équation sont réelles,
il est évident que les ecarrés de leurs différences seront tous po-
sitifs; par conséquent, I’équation dont ees carrés seront les racines,
et que nous appellerons dorénavant, pour abréger, fguation des
différences , cette équation, dis-je, n’ayant que des racines po-
sitives, anra nécessairement les signes de ses termes alternative-
ment positifs et négatifs ; de sorte que, si celte condition n’a pas

lieu, ce sera une marque sfire que I’équation primitive a néces-
] 1

sairement des racines imaginaires.

29. De plus, comme les racines imaginaires vont toujours deux

a deux, et qu’elles peuvent se mettre sous la forme c—4~By/—i1,
a— Gy —1,a et 3 étant des quantités réelles (voyez la Note IX);
il s’ensuit que la différence de deux racines imaginaires corres-
pondantes , sera nécessairement de la forme 2/#y/—1; de sorte que

le carré de cette différence sera — 422, c’est-a dire une quantité

réelle et négative. Donc, si I'équation proposée a des racines ima-

ginaires , il faudra nécessairement que ’équation des différences
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ait au moins autant de racines réelles négatives qu’il y aura de
couples de racines imaginaires dans la proposée.

50. Mais il est démontré (voyez la Note VIII) qu’une équa-
tion quelconque ne saurait avoir plus de racines positives qu’elle
n’a de changemens de signes, ni plus de racines négatives qu’elle
n’a de successions du méme signe. Donc, le nombre des racines
imaginaires dans une équation quelconque, ne pourra jamais étre

plus grand que le double de celui des successions de signe dans
Iéquation des différences.

31. De la, et de ce que nous avons dit ci-dessus , il s’ensuit
que si I’équation des différences a tous ses termes alternativement
positifs et négatifs, ’équation primitive aura nécessairement toutes
ses racines réelles, sinon elle aura nécessairement des racines ima-
ginaires. Ainsi on pourra toujours juger, par ce moyen, s’ily a
ou non des racines imaginaires dans une équation quelconque
donnée.

ARTICLE II,

Ol Von donne des régles pour déterminer dans cerlains cas

le nombre des racines imaginaires des €quations.

32. Soient @, b, ¢, d, etc. les racines réelles d’une équation
quelconque , et a=-By —1, a—By/ — 1, y+d&y —1,
¥ —dy/—1, etc. les racines imaginaires; les carrés des diffé-
rences de ces racines seront

[a Wi P foiv=o), (@ — dy, etc,
— e (D= d), ete. (¢ — d)*, etc.
¥ 4ﬁ’: = 44\43 etc.
— @ = Pyl 1), (e —a—py— )y
— b+ B yv— 1), (“_‘5—5‘/—1)'
=6 sy 1) (&= ¢l /e g
d—+ B yv— 1), (2 = d — B y/— 1)
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(y —a+ & vy— 1), (y—a—J y/— )
G—t+dyv—1), (—b—dy— )
OG—c+dy—1r, (G —c—dy_ iy
OG—d+dy—1y, (—dedy—i)

ete.

(2 — 3+ (B—d) V— 1), (a— 9 —(f—2) /— A
(@ =2+ B+ v— 1), (e — ) —(B+J) y/— 1)

etc.

lesquels seront, par conséquent, les racines de I’équalion des dif-
férences.

Soit m le degré de I'dquation proposée , qui est &gal an nombre
des racines @, &, c, etc. a4+ By —1, a—§f vV — 1,
y+d&yV—1, 93—y —i1, ete. celui de I'équation des diffé-

s . i
m (m )=n (n° 8): soit P le nombre des racines

rences sera -

réelles a, b, ¢, etc. et 2¢ celui des racines imaginaires a--81/—i,
a—By =1, 3y —1, 3—4 V/—1, etc. en sorte que
m=p--2¢, il est facile de voir par la table précédente que,
parmi les 7 racines de I'équation des différences, il y en aura né-

cessairement ’—’—(’32:.2 de réelles et positives, ¢ de réelles et néga-
tives, et 2¢ (p --g—1) d’imaginaires.
33. Qu'on fasse maintenant le produit de toutes ces racines,

et il est visible que le produit des Z 4 :l)racinespositivessera

toujours positif, que celui des ¢ racines négatives sera positif
ou négatif, suivant que le nombre ¢ sera pair ou impair, qu’en-
fin le produit des 2g(p—-g— 1) racines imaginaires sera toujours
positif; en effet, ces dernitres racines étant deux & deux de la
forme (A4-By/—1), (A—By/—1), leurs produits deux &
deux seront de la forme (A*~-B*)’, et par conséquent positifs :
donc le produit de toutes ces racines ensemble sera toujours ausi
positif,

Donc le produit total sera nécessairement positif ou négatif,
suivant que ¢ sera pair ou impair, j
6
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Mais le dernier terme d'une équation est, comme 'on saif 5
égal au produit de toutes ses racines avec le signe <4~ ou —, suivant
que le nombre des racines est pair ou impair.

Donec le dernier terme de 1’équation des différences, dont le
degré est 12, sera nécessairement positif, si 7z et g sont tous deux

pairs ou tous deux impairs, et négatif si 'un de ces nombres est
pair et l'autre impair.

54. Or, si n et ¢ sont tous deux pairs ou impairs , n—g sera
nécessairement pair , et si 7z et g sont, 'un pair, et l'autre
impair, n-—g sera nécessairement impair; mais & cause de

m(m—1)

n—= et de m=—p--2gq,0n a n-—-—q:f_’ﬁﬂ;:_ll_{_zq(p_i_q__l)’

2
R . b . . - plp—1)
de sorte que 72—g sera toujours pair ou 1Impair, suivant que ——;
le sera.
Done le dernier terme de I'équation des différences sera néces-

sairement positif ou négatif, suivant que le nombre E(—P;:) sera

pait ou impair, c'est-d-dire, suivant que le nombre des combi-
naisons des racines réelles de la proposée, prises deux & deux,
sera pair ou impair.

35, Supposons, 1°. que ce dernier terme soit positif, il faudra,

p(p—1)

en ce cas, que ——

Pk
2

soit pair; donc oul==2A, et p=4A, ou
—oA et p==4Ar-1; d’olt il s’ensnit que, dans ce cas, le

nombre des racines réelles de la proposée sera nécessairement mul-
tiple de 4, si ce nombre est pair, c’est-a-dire si le degré deI’équa-
tion est pair, ou multiple de 4 plus 1 si le degré de I’équation
est impair. Ainsi il sera impossible que ’équation ait 2, ou 3,
ou 6, ou 7, ete. racines réelles.

2°. Supposons que le dernier terme de I'équation des différences

soit négatif, il faudra alors que P(P—;l—) soit impair, donc ou

2-_-:27\4- 1 etp..—:l}?\-—{—-:z, ou (h-_——p:l)=27\—|-1, et p=47\—{—3;

d’o il sensuit que, dans ce cas, le nombre des racines réelles
de la proposée sera nécessairement multiple de 4 plus 2 sile de-
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gré de 1’équation est pair, ou multiple de 4 plus 3 si ce degré
est impair. De sorte qu’il sera impossible que I’équation ait en
cecas 1, ou 4,oub, ond, on g, etc. racines réelles.

36. Ainsi, par Vinspection seule des signes de I’équation des
différences, on sera en &tat de juger, 1°. si toutes les racines de
I’équation proposée sont réelles ou nonj 2°. si le nombre des ra-
cines réelles est un de ceux-ci: 1, 4, 5, 8, 9, 12, 13, etc. ou bien
s’il est un de ceux-ci : 2, 3, 6, 7, 10, 11, etc. ce qui suffira pour
déterminer le nombre des racines réelles et des imaginaires dans
les équations qui ne passent pas le cinquitme degré, et dans
toutes les équations ou I'on saura d’avance que les racines ima-
ginaires ne sauraient étre plus de quatre.

Peut-8tre qu’en poussant plus loin cette théorie, on pourrait
trouver des régles stires pour déterminer le nombre des racines
réelles dans les équations de degrés quelconques; les méthodes
que l'on a propoesées jusqu’a présent pour cet objet, étant ou insuf-
fisantes, comme celles de Newton , Maclaurin, etc. ou imprati-
cables, comme celles de Stirling et de De Gua, qui supposent
la résolution des équations des degrés inférieurs.

ARTICLE II1I,

Oi Pon appligue la théorie précédenie aux équations des second,
troisiéme et quatricme degrés.

57. Soit 1'équation proposée du second degré , comme

x*—Ax~+B=o,

. . 2.1
P’équation des différences sera du degré — = 1; et on trouvera par

la méthode du n° 8 que cette équation sera

'U'—'(Z—'_-'-O,

ou l'on aura a= A*—4B.

Ainsi les racines seront toutes deux réelles ou toutes deux imas<
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ginaires, suivant que I'on aura A*—4B.> 0, on <o; et elles
seront égales lorsque A*= 4B.

38. Soit proposée I'équation générale du troisidme degré
2*— Ax* 4+ Bxr— C=o,

3.2

i =3, et on trou-

I'équation des différences sera ici du degré

vera par la méme méthode

v'—av'-bv—c=o,
a = 2 (A*— 3B)
b= (A*— 3B)
4 (A* — 3B) (B'—3AC) — (gC — AB)?
5 .

o

Donc, pour que les racines soient toutes réelles, il faudra que
Von ait,

1°. A*—3B>o0,

2°. 4 (A*— 3B) (B* — 3AC) — (9C — AB)* > o.

Si I'une de ces deux conditions manque, ’équation aura denx
racines imaginaires.

59. Soit maintenant proposée ’équation générale du quatriéme
degré
z*4+Bxr* —Cr+D=o,
dont le second terme est évanoui pour plus de simplicité ; le

degré de I’équation des différences sera ‘%5 =6; de sorte que

cette équation sera
v® — qv® - byt — cu® +dv—evf=o0;
ot 'on trouvera par la méme méthode

8B

22B* - 8D

~— 18B® 4 16BD -}~ 26C* :

17B* 4 24B*D —7.16D* 4~ 3.16BC*

4B° — 2.27C*B*—8.27C*D+-3.4°BD*—2.4:B°D
D = 2%, 4B°D* - 4°.5°C*BD = 4'BD == 4C°BS = 3°C#

| (O |
I

R~
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Donc, 1°% si la guantité

4D3 — 2° AB*D* - 4*.3°C*BD + 4°B'D — 4C:B’ — 3:C#

est négative, la proposée aura nécessairement deux racines réelles .

et deux imaginaires; mais si cette quantité est positive , alors la
proposce aura toutes ses racines réelles ou toutes imaginaires.
Or, toutes les racines seront réelles si les valeurs de tous les
coefficiens @, b, ¢, d, e, f, sont positives ; donc elles seront
toutes imaginaires si le dernier coefficient f étant positif, quel-
qu'un des autres se trouve négatif.
Supposons donc le coefficient £ positif, ensorte que lon ait

4D° — 2°. 4B D 4 4. 5:CBD - 4BD — 4C'B* — 3°C > o,

et on trouvera que tous les autres coefficiens seront aussi positifs
si 'on a en méme temps

B<o, et B —4D>o0,

et qu’au contraire quelqu’un d’eux deviendra nécessairement né-
gatif si

B>o0, ou B*— 4D <o.

@

Ainsi, dans le premier cas, les quatre racines de I’équation se«
ront toutes réelles , et dans le second elles seront toutes imagi«
naires.

On pourrait de méme trouver les conditions qui rendent les ra=
cines des équations du cinquitme degré toutes réelles, ou en partie
réelles et en partie imaginaires; mais comme, dans ce cas, I’équa-

534

tion des différences monterait au degré —- = 10, le calcul de-

viendrait extrémement prolixe et embarrassant.

ARTICLE 1V.
Sur la maniére de trouver les racines imaginaires d'une dquation.

40. Nous avons vu dans I'article II° que chaque couple de ra-
cines imaginaires correspondantes a==f |/ —1, a=—pf /=1
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donne nécessairement dans 1’équation des différences une racine
réelle négative —4(3*; d’on il s’ensuit qu’en cherchant les racines
réelles négatives de cette équation, on trouvera nécessairement
les valeurs de —4f3*, d’ou I'on aura celle de 2 a I'aide desquelles
on pourra ensuite trouver les valeurs correspondantes de o, comme
nous avons enseigné dans le n° 17; de sorte qu'on aura, par ce
moyen, l'expression de chaque racine imaginaire de 1’équation
proposée; ce qui est souvent nécessaire , surtout dans le calcul
intégral. Voici seulement une observation qui peut servir & ré-
pandre un plus grand jour sur cette théorie, et a dissiper en méme
temps les doutes qu’on pourrait se former sur son exactitude et sa
généralité.

41. Lorsque les parties réelles @, 3, etc. des racines imaginaires

o o
dor— g o
e AR
den & W med

elc.

sont inégales tant entre elles qu'avec les racines réelles @, &, c, etc.
il est évident, par la table de l'article second, que l’équation

des différences n’aura absolument d’autres racines réelles néga-
tives que celles-ci: —48*, — 44, ete. de sorte que le nombre
de ces racines sera le méme que celui des couples de racines ima-
ginaires dans I’équation proposée.

Mais sil arrive que, parmi les quantités a, 3, etc. il s’en
trouve d’égales entre elles on d’égales aux quantités ¢, b, c, etc.
alors I’équation des différences aura nécessairement plus de racines
négatives que la proposée n’aura de couplesde racines imaginaires.

Eneffet, soit a==1, les deuxracines imaginaires («—a-+@3y/—1)’
(r—a—py—1)% deviendront — 22, et —[3*, et par consé-
quent réelles négatives.

De sorte que si I’équation proposée ne contient, par exemple ;
que les deux imaginaires ¢ -~ By —1, et a—pBy—1, I'équa-
tion .des différences contiendra, dans le cas de a=a, outre la
racine réelle négative — 43, encore ces deus-ci: —@*, —f@%
égales entre elles,
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Dot 'on voit que lorsque I’équation des différences a trois
racines réelles négatives, dont deux sont égales entre elles, alors
la proposée peut avoir ou trois couples de racines imaginaires,
on une seulement,

Si la proposée contient quatre racines imaginaires o ~B1/—r1,
a—By—1,y4dy—1, y—dy—1, alors I'"équation des
différences contiendra d’abord les deux racines réelles négatives
— 4f3*, —4d*; ensuite si a =a , elle aura encore ces deux-ci *
— B, —B*; siy=20, elle aura de méme ces deux autres-ci :

—d*, —d*; enfin, si on avait a =1y, alorsles quatre racines

imaginaires

(a—y+(B—=NHyV—1), (a—y—(B—I)y—1),
(a—2+(B4+MNy—1), (a—y—(B+)y—1),

deviendraient

—(B—dy, —@—=4J), —(B+I), — @B+,
c’est-a-dire réelles négatives, ou égales deux & deux.

42. De la il est facile de conclare,
1°. Que lorsque tontes les racines réelles négatives de 1'équa-
tion des différences sont inégales entre elles, alors la proposée

aura nécessairement autant de couples de racines imaginaires qu'il
y aura de ces racines.

Et, dans ce cas, nommant —» une quelconque-de ces racines,
w . .
on aura d’abord B.—:Kg—; cette valeur étant ensuite substitude

dans les deux équations (H) du n® 17, on cherchera leur plus
grand commnn diviseur, en poussant la division jusqu'a ce que
Pon parvienne a un reste ot « ne se trouve plus qu’a la premidre
dimension ; et faisant ce reste égal & zéro, on aura la valeur de «
correspondante i celle de 8; par ce moyen, chaque racine né-
gative —w donnera deux racines imaginaires a -8 ¢/— 1,
et a —fBy'—1. _ 1109 godisiay
2°. Que si, parmi les racines réelles négatives de I’équation
des différences, il'y en a d’égales entre elles, alors chaque racine
inégale, s’il y en a, donnera foujours, comme dans le cas pré-
cédent, une couple de racines imaginaires; mais chaque couple

SCD Lyon
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de racines égales pourra donner aussi deux couples de racines
imaginaires, ou n’en donner aucune; ainsi deux racines égales
donneront oun quatre racines imaginaires ou aucune ; trois racines
€égales donneront ou six ou deux racines; quatre racines égales
donneront ou huit ou quatre racines imaginaires, et ainsi de suite.

43. Or soient, par exemple , —w, et —w deux racines égales

. A u . w
négatives de 1'équation des différences, on fera B= %—- comme

ci-dessus; et substituant cette valeur de B dans les équations (H)
du numéro cité, on cherchera leur commun diviseur en ne poussant
la division que jusqu’a ce que l’'on parvienne i un reste ol = ne se
trouve qu’a la seconde dimension, & cause que la valeur de £ est
double, comme nous I’avons déjd remarqué dans lendroit cité.

Ainsi, faisant ce reste égal a zéro, on aura pour la détermi-
nation de « une équation du second degré, laquelle aura, par con-
séquent, on deux racines réelles ou denx imaginaires.

Dans le premier cas , nommant ces deux racines o’ et a’, on
aura les quatre racines imaginaires o' By/—1, &' —fB /—1,
a'+fBy—1, a'— P /—1; dans lesecond cas, les valears de
a étant imaginaires contre 'hypothtse , ce sera une marque que
les deux racines égales —w, —w,; ne donneront point de ra-
cines imaginaires de la proposée.

44. 8'il y avait dans I’équation des différences trois racines
égales et négatives —w, —w, —w, alors faisant /3:::.—‘?',‘
on poussera seulement la division des équations jusqu’a ce que
Pon parvienne & un reste ou « se trouve i la troisiéme dimen-
sion; de sorte que ce reste étant fait = o, on aura une équa-
tion du troisieme degré en a, d’ou l'on tirera, ou trois valeurs
réelles de o, ou une réelle et deux imaginaires: dans le premier
cas, on aura six racines imaginaires; dans le second, on n’en
aura que deux, les valeurs imaginaires de « devant toujours étra
rejetées comme contraire & I'hypothése, et ainsi de suite,
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CHAPITRE VI

Sur la maniére dapprocher de la yalewr numérique des
racines des équations, par les fractions continues.

ON a va dans le chapitre IIT comment on peut réduire les
racines des équations numériques & des fractions continues, et
combien ces sortes de réductions sont préférables & toutes les
autres : nous allons ajouter ici quelques recherches, pour donner

a cette théorie toute la généralité et la simplicité dont elle est
susceptible.

ARTICLE PREMIER.

Sur les fractions continues periodiques.

45. Nous avons déja remarqué dans le n° 18, que lorsque la

racine cherchée est égale 4 un nombre commensurable, la frac-
tion continue doit nécessairement se terminer; de sorte que 'on
pomrra avoir I’expression exacte de la racine; mais il Y aencore
un autre cas ou l'on peut aussi avoir I'expression exacte de la ra-
cine , quoique la fraction continue qui la représente aille 4 V’in-
fini. Ce cas a lieu lorsque la fraction continue est périodique’,
c’est-a-dire , telle que les mémes dénominateurs reviennent toup-
jonrs daus le méme ordre a Pinfini; par exemple,. si on avait la,
fraction

PRz
P+t
7 F b ete.
il'est clair qu’en nommant z la valeur de cette fraction, on aurait

1
Tt o
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ce qui donne cette équation :

gx* = pgxT —p =0,

par laquelle on pouira déterminer z; il en serait de méme si la
période était d'un plus' grand nombre de fermes, et l'on trou-
verait toujours pour la détermination de x une équation du second
degré. 11 peut aussi- arriver que la fraction continue soit irrégu-
litre dans.ses premiers termes, et qu’elle ne commence a devenir
périodique qu’aprés un certain nombre de termes; dans ces cas, on
pourra trouver de la méme manitre la valeur de la fraction, et elle
dépendra. pareillement toujours d’une équatmu 'du. second - degré;
car soif,. par exemple, la fraction

.—__*_ 1 .
+
g r F etc.
Nommons toute ‘la fraction z, ‘et y la partié’ qui est périodique,
savoir :

on 'am'ia"

1

sl v 4 mais I’

1—¢qg(x— o

d oi I'on tire y =

+

qm don‘ne Sy = ISY =l == 0 donc, substituant pour y sa va-
leur en %, onaura

PR rseap) (1 —-q(x—m)—r(x—-q(x—p)) w28

équation qui, étant développée et ordonnee par rapport a x,
montera au second degré.

46. On voit, par ce que nous venons de dire, que le cas dont
il'agit, dbit avoir lieu toutes les fois que , dans la suite des équa-
tions transformées (a), (b), (¢), (d), etc. dun® 18, il s’en trou-
vera deux qui auront les mémes racines; car si la racine z, par
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exemple , de I’équation (c) était laméute quela racine  de 1'équa~
tion (), on aurait

L
A

ce qui est le cas que hous avons examind ci~déssus ; et Hinsi des
autres. Donc, quand jon voit que;, dans une fraction continge, cer-
tains nombres reviennent dans le méme ordre, alors pour s’as-
surer si la fraction doit étre réellement périodique '3 Pinfini 3l
W'y aura qu'a examiner: si-les racines des dewx équations  qui ont
la méme valeur entitre approchée , sont parfaliement égales, c’est-
dire si ces deux équations ont une racine commune; ce qu’on
reconnaitra aisément en cherchant léur plus grand commun divi-
seur, lequel doit necess,mrement renfermer toutes les racines com-
munes aux deux équatlons , §il’ y en a: or, comime nous avons
vu que toute fraction continue périodique se véduit & la racine
d'une équation du second degré > il s’ensuit que le plus grand
diviseur commwn dont nous; parlons sexa nécessairement du second
degré.

47. Supposons donc qu’en ait reconnu que parml les dlff'erentcs
u]Lauons transformées-, ‘il is’en frouve ' denx""qui ‘ont la méme
racme alors 13. fractmn Contmue sara necessanement perlodlqne

lmﬁm' de sorfe qu'on pourra la continuer aussi loin qu’on
Voudra » en répétant seulement-les mémes nombres; 'mais voyons
comment on pourra dans ce cas continuer aussi la suite des frac-
tions convergentes du n° 33 , $ans étre’ obligé de les calculer toutes
P'une apres 'autre par les formules données.

Pour cet effet, nous supposerons que.l’on ait en général

1 1 1
T =N+ =) 519!?—1?\"%?5 ,w"-"—“-?\f'i-?: etc.

ensorte que x etant la racine icherchée ,. o, 2", 2", efc. soiené

celles des Cquatlons tranformées que nous avons,  désignées ailleurs
par y, z, , etc. et I'on aura

A T

x._i\——{-——-_-*_- A" ete,
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Donc, faisant comme dans le n° cité

/4 1 L

7 =¥ i

F =2 L' — 3L T

Vi A7 Lo A% Bl spn I

Y= "= ! B ALY - L

etc, efc.

on aura ces fractions convergentes vers x

l lf Zﬂ llﬂ : l[v
b i i‘f‘ » Eﬁ ’ L7? E\T 2

etc.

Maintenant I'équation z = N -} —;—, donnera
DE, == T 'y =27 =13
mettons au lieu de 2’ dans le second membre de cette équation ;

sa valeur A" -} 517 » et multipliant par ", on aura
22 2 = AN s brad) &=l =il a5
on trouvera de meme, en substituant dans le second membre de
cette équation, A” — — — & la place de 2',
N 1
iRl o LA e o
et ainsi de smite,

Pareillement 1’équation’ 2’ = A" ~- v > donnera
o ==rnat e Y =2 Bt AL
ensuite substituant dans le second membre 2” - ZIT' ala place
de 2", et multipliant par z”, on aura
2’2" = (AL - L’).:c’” 4 ag- T8 gt gl 38 e

et ainsi de suite.
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Dron il s’ensuit qu’on aura en général, quelle que soit la frac-
tion continue, soit périodique ou non,

) —

=l b
TR
ata,... . P=0' 4 LI

Il faudra bien se souvenir qu’ici et dans les caleuls snivans les
exposans des quantités x, /, L, représentent des indices ; €t non
des puissances.

48. Cela posé, supposons que l’on ait trouvé , par exemple ,
24TV = 2%, clest-a-dire que la racine de la (u - »)eme trans.
formée soit égale & celle de la transformée w®me; alors on aura
aussi gtV Tl gt gutifa_ 212, etc. a2 = 2%, etc.
et en général 2 T T7 — 2 +7. done aussi A4H7 ! =t
kit ks

, etc. et en général AP T T = 3T ge sortg
que l'on aura

’ 1
Tl +A”+ etc.
1

AM -

T el

Maintenant si on suppose en général p=pt+ny~m, il est

facile de voir que les deux équations (B) du numéro précédent
deviendront

227 a2t TR, T GRS - gy
e B TN P
;v’x”....xf‘xx“”'l.x”"'g....:c“+7’><(a;“+1x!4+2“_'xp.-}-:)n
=B T T L

Or en faisant dans les mémes équations p=p, on a

P ESRNY, N ol S B ol

2 :c”....x“:L#x”f{—jL‘l‘“I.
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De plus , a cause de

3_1&:7\#-+1+_1__“ w(4+1_____?\y+s+_1__

’ A
.’I‘P‘+ 8 a:[.-'l-i

ete.

il est clair que si on fait
b/ . H- 0
Bo= alT! H a
prozs MATA% 4  H = a“tt gy
B g L e e L e pp
o= A TAR B He = a4 HART )
efc. ete,

on aura en général
L s s e e hfx”"""-{— i (D)
i 2 x"‘+2....x“_’_a:H’—mM—!—a-{—H;*l

Donc on aura

YN o el e - Y T © it

et, & cause de e S z“.(byp.)

.x’;+l et g it it L s

De sorte qu’en faisant ces substitutions dans les deux équations
ci-dessus , on aura

(Z"J'xp'—{-l‘u_l)(Hwaz‘u-!_q—l—Hw—l)(Hua:y'—f-Hy—!)‘
=Ft T L T

(LA L) (BT BT (@ o BT
= Lf x_u.-f-'zr - B , -

Dans ces formules et dans les suivantes, les exposans des quan-
tités A, h, H, dénotent aussi des indices.
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49. Or, les équations (D) étant divises I'une par LFautre,
donnent

xf“' e ;va!‘-i-?",“ ha'--—:. :

Ho 2 94 3P

e

dott Von tire 2*T7 — M
2 }L’—"]’ng‘“

HY =t et

. T
Done, faisant 6 ==, on aura 2" 77 — S,
A7 e T

3 g § = T ] =1
J6.0k Hw$#+w—f—HT, B rT H” h
| B HT ot
de voir par la nature des quantités i, &, I', etc. H, H', H’, éte.
que l'on a

3 mais il est facile

Hh—lH=1, AW —KH=—1, HB —}"H =1, etc.

d’clt P'on aura en général
T T WA T ey,
le signe supérienr ayantiticu lorsque @ est un nombre pair, et
Pinférieur lorsque = est impair.
Donc, faisant ces substitutions dans les deux dernitres équations
du numéro précédent, on aura
s (Fal 4 B ) (B T
— 0 — 7 —_—1 O o o s
(FH o P H O L BV T L g
s (LA - LTy @ R Ty =
(LfH‘r—l __.LE'—J. }]ﬂ“) SEM—}-L?—.IIZW—LF}Z?_I ;
les signes ambigus dépendant du nombre =« , comme nous Favons
vu ci-dessus.

Maintenant , si dans I’équation (L), on fait o=, on aura,
H g g

o 3 d’odt l'on
TUET R

3 cause de 217 = at Chyp.) =¥

SCD Lyon
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tire 'équation en 2

H (2 = (K —=H"")a" =1 """ =o..... (F)

laquelle donne

.x!u A A PG e (e + V((hv_Hv—!)g+4],Ivhv-!)
e aH'
Soit, pour abréger,

B
HV

;IV—H'_l
P=—

o H' -4 Q:P“—]—-

2

ensorte que l'on ait 2= P +~ {/Q; substituant cette valeur

= (PP 74 Q) (WP 4+ H ™ +H yQ)
= A HT S T R R TN
= (L P+ LT L L Q) (H'PH-H T - H Q)
=L — LT H) (P4 Q) L T AT — LA

d'on, a cause de I'ambiguité du radical y/Q, on tirera quatre

équations, par lesquelles on pourra déterminer T W Gl

50. En effet, supposons pour abréger

PP V=
IL'P L1 = FF
HP+H '"=K.
les exposans de £, F, K, dénotant des indices 5 on trouvera ces
quatre équations :
FH ' —FT'H =

(fZ+7vQ) (K + W Q) — (f*—IF/Q) (XK' —H' 1/Q)»
§ EVQ
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PTUT B e B VQ) (FF—F1Q) (K —H'y/Q)s
b Rt ¥ 2vQ
(P—vQ) (f*+#yQ) (K'+H Q)
15 21/Q
{8 ¢ RO IR ot T R
= (FEH L4 y/Q) (K'+H'y/Q)" — (FX—L¥ 1/Q) (K — 1 y/Q)=
e 21/Q !
LI AT L e e (B VQ) (P — L Q) (K — W /Q)e
. 2 /Q
== (E=VQ) (F*+1# Q) (K' + H' /Q)*
.5 2 yQ 4

Donc si on ajoute la premiére multipliée par 27 A la seconde

multipli¢e par H”, et de méme la troisitme multipliée par %7 3 la

quatriéme multipliée par H” , et quon fasse , pour abréger ,
on aura, a cawse de A"H" ' —H" 57! — o, (n° 49),

2 = U+ E1vQ) (G"+H” Q) (K + 1 Q)"
2 VQ
s U =8 Y0) (%= H" 470 (K" = WY Q)"
2 1/Q
If — F"+L* Q) (G"+H" 1/Q) (K' + W Vo),
e 2 yQ p
— = 1F Q) (G* 0" @) TRY L1 o)

2y Q »

p étant = p = 1y - 7,

Ainsi, lorsqu’a Paide des quantités A, A", A", etc. A““L”, on
aura calculé, par les formules (A) et (C), les quantités 7, 7,
L' 5 ete. L, L &0 étc. jusqu’a 2 et LY, et les quantités %,
W, H, etc. H, H, H", etc. jusqu'a 7%’ et H', on pourra, par

les formules précédentes , trouver les valeurs de 2 et de L » ceste
3
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2

e : b :
a-dire, les termes de la fraction e quel que soit l'expesant du
L

quanti¢me p; car pour cela il n’y aura qu’a retrancher w de p,
et diviser la différence par v, le quotient sera le nombre 2 qui
entre dans les formules précédentes comme exposant , et le reste
sera le nombre @, qui sera parconséquent tonjours moindre que ».

Quoique les formules précédentes renferment le radical /' Q,
il est facile de voir que ce radical s'en ira apres le développement ;

de sorte que les nombres 2¥ et L° seront toujours ‘rationnels et
entiers.

51. Au reste, si on voulait trouver en général I’équation du
second degré, par laquelle peut étre déterminée la racine x de

I’dquation proposée, lorsqu’on a T = 2", comme dans len° 48,
il n’y aurait qu’a remarquer que les équations (B) du n° 47 étant
divisées 'une par l'autre, donnent en général

I :
£ =T-e-——::—l ................. (G);
L'x 4+ Lf
vt
d’ott l'on tire, en faisant p=p, 2= ; donc, sub-
TRTEE

: I —L'x :
stituant cette valeur de »* dans I'équation (F)dun° 49, on aura
celle-ci:

H(LFe— Ty — (0 =BT =) (1)
—E (L) =0,
c’est-a-dire ,

ALy e (B =HTHFT =T (L)) 2
;_(2HVL#—1ZF—1+(]ZV__HV—1)(L#"'llﬁ_{_zfj-—lLl‘)__th—ll.“L#)x
ST e (=TT =B T =0,

et cette équation sera nécessairement un diviseur de I'équation
proposge.
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ARTICLE 11,
0i l'on donne une manicre irés-simple de réduire en fractions
continues les racines des équations du second degré.
53, Considérons I'équation générale du second degré
Ez*—2e2—E=o,

dans laquelle E, E' et ¢ sont supposés des nombres entiers, tels
que ¢ - EE > o, pour que les racines soient réelles; cette équa-
tion étant résolue, donne

- :

e+ V/ (#4+EE)
E!

ou le radical peut étre pris positivement ou négativement. Suppo-
gons que la racine cherchée soit positive, et soit A’ le nombre
entier qui sera immédiatement plus petit que la valeur de z : on

fera donc x =4~ %; et substituant cette valeur dans 1’équation

proposée , on aura une équation transformée dont I'inconnue
sera x': or, si apreés avoir fait la substitution, on multiplie toute
I’équation par «*, qu’ensnite on change les signes, et qu'on
suppose , pour abréger,

€ = NE — ¢,

E = E 4 2:aa" — E'A",
on aura la transformée

E'z* =22’ —E' =o,

laquelle donnera

of e YV EED
— E” H

on cherchera donc le nombre entier A", qui sera immédiatement.

plus petit que cette valeur de %', et on fera 2’'=A"-- ;,-— s €t
aingi de snite.
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Maintenant je remarque que la quantité ¢*--E'E’, qui est sous
le signe dans I’expression de &, devient, en substituant les valeurs
de ¢ et de I", et Otant ce qui se détruit, celle-ci ¢ -} ELE’, qui
est la méme que celle qui est sous le signe dans ’expression de x;,
d’ou il est facile de conclure que la quantité radicale sera tonjours
la méme dans les expressions de =, «/, 2", etc.

Donc, si on suppose, pour abréger,

B=¢-LE,

et qu’'on fasse (le signe << dénote qu’il faut prendre le nombre
entier qui est immédiatement moindre )

f=NE —¢

E = E 4 22 — E'2\%, e R SOV T

Eﬂ.’ f— E’ + ZE,A_”— E”}\‘ﬂz’ po A s 8"’ :AI'J EM e s eﬂ'

Ev—= E" 4 2"\" —E"A™, ; e s T DR SR
ete. ele.

on aura
M0t PR B R B
.'E._-—-—E, —=r
L. £4+ 1B __
JL"—' Err+VB.; ?\”’

E‘ff :cilf

A”

etc.

P WY LT
e, + efc.
Quant au radical / B, il faudra toujours lui donner le méme

signe qu’on lui a supposé dans la valeur de la racine cherchée x.
On peunt observer encore que, comme: ’on a trouvé

=EF =¢-4EE =B,
B— B—¢" »

¢4 B—:"
on aura B' = ——, et deméme E'=—5—, E"=——,elc,
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Ainsi on pourra, si onle juge plus commode, employer ces for-'
mules & la place de celles qu’on a données plus haut

» pour avoir
les valeurs de E’, E”, etc.

53. Maintenant je dis que la fraction continue qui exprime la
valeur de x, sera toujours nécessairement périodique.

Pour pouvoir démontrer ce théoréme , nous commencerons par
prouver en géncral que, quelle que soit Péquation proposée ,
on doit toujours nécessairement arriver i des équations transfor-
mées dont le premier et le dernier terme soient de signes diffé-
rens. En effet, nous avons vu dans le n° 19 quon doit toujours
nécessairement arriver 4 une équation transformée qui n’ait qu’une
seule racine plus grande que l'unité, aprés quoi chacune des trans-
formées snivantes n’aura aussi qu'une seule racine plus grande que

Punité ; soit donc
au® = bu"=' - cu"=* -} etc, o K = 0,

une de ces transformées qui n’ont qu'une seule racine plus grande

que I'unité, et soit s la valeur entitre approchée de z: on fera ,

- - 1 .
pour avoir la transformée suivante > u=s-—, ce qui, étant

substitué, donnera une transformée dans laquelle il est aisé de
voir que le premier terme sera

(as™ 4+ bs"=* -4 cs™=* of- ete, - k) wm,

et que le dernier sera a. Or, puisque la vraie valeur de dans
la transformée précédente, tombe entre ces deux-ci: Wiens bt
# = «, entre lesquelles il ne se trouve aucune autre valeur
de u (hyp.), il s’ensnit qu’en faisant ces deux substitutions dans
I’équation en z, on aura nécessairement des résultats de signes
contraires; car il est facile de concevoir qu’il u’y aura, en ce cas,
qu'un seul des facteurs de cette équation qui pourra changer de
signe en passant d’une valeur de z & Vautre (n° 5). ;Mais la sup-
position de = donne le résultat ez~ (tous les autres termes
devenant nuls vis-3-vis de celui-ci), lequel est de méme signeé
que le coefficient @; donc il faundra que la supposition:de w=s
donne un résultat de signe contraire & @ ; mais ce résultat est




62 DE LA RESOLUTION
égal a
as™ = bs"=*' = cs"=* - efc. =+ k;

donc , puisque cetle quantité est en méme temps le coefficient
du premier terme de I’équation transformée en 2, dont le der-
nier terme est @, il s’ensuit que cette transformée aura néces-
sairement ses deux termes extrémes de signes différens.

Et on peut prouver de la méme maniére que cela aura lieu, a
plus forte raison, dans toutes les transformées suivantes.

Cela posé, puisque I’équation proposée

Ezx* — 2¢e2z — E=o0
donne les transformées (n° 52)
Ex® = 2d2’ — F

men, e 25#{}(!!! iai- Eﬂ

etc.
;] s'ensnit de ce que nous venons de démontrer,, qu’on parviendra
nécessairement a des transformées, comme
E”+’(x7)’ — ad2? —E =o
E7+g(‘r?+l)n Fars 2é?+1x3/+1 = E}/-!-l EIp
efc.

dont les premiers et derniers termes seront de signes différens;

de sorte que les nombres E”, B, E”+2, etc. seront tous ds
méme signe. Or, on a (n° 52)

B = (@) + BET = @) + PTET? = et

donc, puisque £, E”"'l, E7+2, etc. sont de méme signe, les

produits B, EYTEY T2, etc. seront nécessairement positifs;
d’ou il s’ensuit, 1°. que l'on aura (¢) <B, (.57’—H)l < B, etc.
clest- a-dire (en faisant abstraction du signe) & < v B,




DES EQUATIONS NUMERIQUES. 63
&1 < /B, et ainsi de suite & 'infini; 2°. que I'on aura aussi >
3 cause que les nombres E, E, E', etc. sont tous entiers, E* <B,

1t < B, E¥XT2 < B, et ainsi de suite. Donc, comme B est
donné, il est clair qu’il n’y aura qu’un certain nombre de nombres
entiers qui pourront étre moindres que B et que y/ B ; de sorte
que les nombres E?, B2 TR R TR ate e
pourront avoir qu'un certain nombre de valeurs différentes, et
qu’ainsi dans 'une et 'antre de ces séries, si on les pousse a
Vinfini, il faudra nécessairement que les mémes termes reviennent
une infinité de fois; et, par la méme raison, il fandraaussi qu'une
méme combinaison de termes correspondans dans les deux séries,
revienne une infinité de fois; d’ou il s’ensuit qu’on aura néces-
sairement, par exemple,

L ahoae 2tEe E?-l—é‘, s ki o Enf-H"
ou bien, faisant 9 -4-Jd'=pu,
e EY, et ot 3

donc, & cause de
B = (éu,)n -+ EHE!A_H = (s‘“_’_”)’ +E”+"EM+V+1’

. V-1 1 .
on aura aussi E*T' 1! — gt 3 mais on a

Iz A
=R, 3 B R T R, 14

7 Co

Ef“'+1 EF‘+‘+1 2

v LL . . .
done 2t =z ; donc la fraction continue sera nécessairement

périodique (n° 48).
54. En effet, on voit par les formules du n° 52 que si I'on a

Ept+_v= B, et ST — ey', on aura
) Datiaids ot =EH+1, AP ?\"+1, S ks
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et ainsi de suite; de sorte qu’en général les termes des frois sé-
ries E, K, E', efc. ¢, ¢, ¢, etc. %, 2", etc. qui auront pour ex-
posant - 71v 4 %, seront les' mémes que les termes précédens,
dont les exposans seront w~~7, en prenant pour » un nombre
quelconque entier positif.

Alinsi chacune de ces trois séries deviendra périodique, & com-

mencer par les termes T, ¢ et 2“7, et leurs périodes seront
de » termes, apres lesquels les mémes termes reviendront dans le
méme ordre, a l'infini,

55. Nous venons de démontrer qu'en continuant la série des
nombres I, ¥, I, etc. on doit nécessairement trouver des termes
consécutifs qui soient de méme signe, et qu'ensuite la série doit
nécessairement devenir périodique: or, je dis que d¢s que, dans
la méme série , on sera parvenu 4 deux termes consécutifs, comme

1 .
E”, I, de méme signe, on sera assuré que l'un de ces deux
termes sera déja un des termes périodiques, lequel reparaitra né-
cessairement dans chaque période.

En effet, comme E?, E7+], sont de méme signe, il est clair
que la transformée

E"+l (mg’ )>?— 26 x? —EY —o

aura nécessairement une racine positive et ’autre négative; de
sorte qu’elle n’en pourra avoir qu'une seule qui soit plus grande
que P'unité; donc toutes les transformées suivantes auront néces-
sairement leurs termes extrémes de signes différens (n° 53), par
conséquent tous les nombres £, F.?'H, E7’+2, etc. seront de
méme signe; de sorte que chacun d’eux sera moindre que B, et

chacun des nombres 5.7, 57’+I, 57-+2, etc. sera moindre que /B
(numéro cité).

56. Or, comme on a B = (&)~ EJ’E?';_I, il est visible que

1 .
les nombres E7, E” 1 seront ou tous les deux moindres que /B,
ou que si l'un est plus grand, l'autre en sera nécessairement

moindre; de sorte qu’il y en aura an moins toujours un qui sera
moindre que y/B.
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Supposons que ce soit E¥, je vais prouver que les nombres
£, E)'_H, E7+3, etc. ¢, €y+1, 53’+2, efc. seront tous néces-
sairement de méme signe que le radical y/B. En effet, puisque les
racines x', 2", ", etc. des €quations transformées, doivent étre
toutes plus grandes que I'unité par la nature de la fraction con-

= . 1 . . .
tinue, on aura donc aussi 2?>1, 277 =1, et aiusi de saite;
donc

77 y+1

E""‘/B < +1/B
5 1\ i T ol oty tc.
gr+! . g+ dnbte

et comme
B=(dy+EET =@y LR+ _ o

on aura

d+yB - E? TS N
s il S ac v B—e?t1’

et ainsi des autres; donc aussi

£ E7+1
——— 1, ——e 1 elc.
St yB—e? 11

Or, comme e”, 57""1, etc. sont plus petits que /B, il est clair

que quel que soit le signe de ces nombres ¢, e”+l, etc. les dé-

- 1 .
nominateurs /B —¢”, 1/B——-a3'+ » etc. seront nécessairement

du méme signe que /' B; donc il faudra que les numérateurs

E”, E?+I, etc. soient aussi tous du méme signe que / B.

Maintenant supposons pour plus de simplicité /B positif, en-

sorte que £ 3 ¥ el

que 57’, 57’+1, e”+2

» etc. doivent &tre aussi tous positifs; je dis
» etc. le seront aussi. Car, soit, ¢’il est pos-
sible, &' =—1n (n étant un nombre positif), comme E? < /B
(byp.), on aura, & plus forte raisan, E¥ < V' B~~n; done
9

SCD Lyon 1




DE LA RESOLUTION

E” E” : . :
= E?= By Sere <1, au lieu que cette quantité doit

étre > 1; done ¢ doit &tre positif. Soit ensuite , il est possible,

1
@ T'—_+, comme l'on a, par les formules du numéro 52,

E}’+1 =;\7+1E7+1 .._gy , on aura 7\y+1}f“?+1 = éy —H'; donC, a

cause que ¢ et # sont des nombres positifs moindres que /B,
1 = . ., . .
et que A?T! est aussi un nombre entier positif, il est clair que
1 .
T2 7" devra étre moindre que y/ B; et , dans ce cas, on prouvera,

comme ci-devant, que &1 devra &tre positif, et ainsi de suite.

Si / B était pris négativement, on prouverait de la méme
manitre que ¢, 1 ete, devraient &tre négatifs; et méme, sans
faire un nouvean calcul, il n’y aura qua remarquer que les for-
mules du numéro cité demeurent les mémes, en y changeant les
signes de toutes les quantités E, E, K, etc. €, &, £, €tc. et dus
radical ¢/ B; de sorte qu'on pourra toujours regarder ce radical
comme positif, en prenant les quantités E, E, E", etc. ¢, ¢, &'5 etew
avec des signes contraires.

57. Cela posé, je dis que si deux termes correspondans quel-

. 1 ~ 9 1 9
conques des suites | E}’+ P | 0 , etc. &, T i st , etc.
sont donnés, tous les précédens dans les mémes suites seront
nécessairement donnés aussi, :

Supposons, par exemple, gue 213 et @12 soient donnés (on
verra aisément que la démonstration est générale , quels que soient
les termes donnés), et voyons quels doivent &tre les termes qui
préceédent ceux-ci, en vertu des formules dun® 52, et des condi~
tions du numéro précédent. On aura d’abord

bR R G e g L
donc iR T gy Y

mais on doit avoir &2 < v/ By done il faudra que l'on ait

o5 _ 2y
& E')"i's

| 2
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On aura de méme

U otepte L o,

2
d, ] 1 3/+l .
ou, a cause de e < V' B, on tirera

it 22 24 v

E?"i"z 2

mais il faut, par la nature de la fraction continue, que A>T soig

un nombre entier positif; donc il faudra que I'on ait

7T vB >,
Or on 4 aussi

TR =B @M=y B4 2 (B2,

donc /' B — o <E3'+3, savoir : en mettant pour P sa va=-
leur ci-dessus, /B — A - e <E7+55 d’ou

o R s S

gy 3 ‘
Donc, puisque le nombre 2> +5 doit stre entier, il est clair qu'il
ne pourra &ire égal qu'au nombre entier qui sera immédiatement
7+5+\/B

plus petit que e ainsi 2212 sera donné, et de 1a &1*
E

5 — Y+
le sera aussi; et comme E"+2=]}-—-(y?)— s il est clair que
E

2 . -
| DL sera aussi donné. Maintenant on aura

g o

3
et par conséquent, & cause de ¢ < /B,

R sl
EY1
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N

Donc, pour que soit entier positif, tel qu’il doit étre, il

faudra que gt -+ v B> E7+1; par conséquent , a cause de
2P =B — (&1"), il faudra que y B— 2 < B2,

¥+

ou bien, en mettant pour ¢ sa valeur ci-dessus,

—+2
d’ott ’on tire
et 2ty
gy te

De sorte que le nombre 2?12 ne pourra étre que le nombre

entier qui sera immédiatement plus petit que la quantité donnée

r+2 B :

‘-——y—i"gi/—'—- donc ce nombre sera donné, et par la les nombres
E

dT et B2 le seront aussi.

Enfin, puisque E¥ est (hyp.) < ¢/ B, on aura, A plus forte
raison, e’ 4/ B> E?; et de 13, & cause de EYE¥ ™' :.—_B-—(e}')’,
on aura /B — Y - Eg’, ou bien, en substituant pour ¢ sava-
leur trouvée ci-dessus,

ce qui donne

oty ST gy
ot

I,

Done le nombre A" ne pourra étre que le nombre entier qui

; . ‘ : i
est immédiatement moindre que la quantité donnée L%E :
E

par conséquent ce nombre sera enticrement donné, et les nombres

¥

¢ et E? le seront aussi.

Or, nous avons va (n° 53) qu'en continuant les séries

1 1 . . .
£, E7+ y ets &, 2t , etc, il arrivera nécessairement que deux

d ) A \
termes correspondans, comme » o, reparaitront aprés un
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certain nombre d’autres termes; ensorte que l’on aura, pat
exemple ,

X i E”""‘P, g S L o

Donc, par ce que nous venons de démontrer » On aura anssi em
remontant

W=l ot et g,
Ey—f—v—f-J‘—z z' Ey+J‘-——2’ Ej,—-i-v-f-J‘—g 2o Ej,-}-J‘._g
etc. ; ete.

Bt — g

oty
58. De 13, je conclus en général, que lorsque dansla série des

nombres E, E/, I, etc. on en trouvera deux consécutifs de méme

signe, celui des deux qui sera moindre que /B sera déja né-
cessairement périodique.

Ainsi, si dans I’équation proposée
Fa* —2ex —E=o
Ies coefficiens E et F/ étaient de méme signe, la série serait pé-
riodique dés le premier on le second terme.
: E

Si I'on a e=o0, ensorte que T-— ¢/ 7 alors on aura B=FEL};
d’oit 1'on voit que des deux nombres E, ¥, le plus petit sera
moindre que {/ B, et le plus grand sera nécessairement plus grand

s E : :

que /' B; donc, dans ce cas, si le nombre i dont il s'agit d’ex-
traire la racine carrée est plug petit que 1'unité, la série sera pé.

riodique dés le premier terme E; et s'il est plus grand que Punité,

la période ne pourra pas 'commencer plus bas qu'au second
terme.

59. On avait remarqué depuis long-temps que. toute fraction
continue périodique pouvait toujours se rame
du second degré; mais personne, que je
démontré l'inverse de cette proposi
d’une équation du second degré

en une fraction continue périodique. 1 est vrai que Euler, dans
un excellent Mémoire imprimé au tome XI des nouveaus Com-~

ner a une équation
sache , n’avait encore
tion, savoir:'que toute racine
se rédnit toujours nécessairement

SCD Lyon
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mentaires de Pétersbourg, a observé que la racine carrée d'un
nombre entier se réduisait toujours en une fraction continue pé-
riodique; mais ce théoréme qui n’est qu'un cas particulier du
ndtre , n'a pas été démontré par Luler, et ne peut |’étre, ce
me semble ; ques par le moyen des::principes que nous avons éta-
blis plus haut.

60. Nous avons donné ci-dessus des formules générales pour
trouver aisément tous les termes des fractions convergentes vers la
racine d’une’ équation donnée, lorsqu’on a reconnu que la frac-
tion continue qui exprime cette racine, est périodique.

Or, dans le cas ol I’équation est du second degré, et ol l'on
se sert de la méthode du n° bSa.xon pourra, si I'on veut, sim-
plifier beaucoup les calculs des nes 48 et suivans, pour trouver

les termes £ et LY de chacune des fractions convergentes
YEers x.

oM , e
1/ B+ ¢ ot xtu‘—l—?r v B+e

B
En effet, ayant 2™ = = — f—i-‘ﬂ'-l-l

—, ol ¥ ,
e(}'_}_#, E*T? et E“T™T" sont connues (w étant < v )il n'y anra
qu'a substituer ces valenrs dans les deux dernicres équations du
n° 48 ; et faisant, pour abréger,
reet p—1 73

— L o
E."*"‘l g f
| e
E#'I‘l

v A =
Hely gtk

g4
H'”ex”-‘l"”'_i_ Hx“—‘l EP‘+7’+1 il G"‘"

s IE e "

on aura
b 1® VB v B\
(f 2 )x(G - \/B)><<K i u+1>
5 lgey+w+ e Ef&+7r+1 s lo‘/B
@O IVLEB HyB
(F +Ef*+‘\ (G" +H" \/B)X(K kiia ,,_,_1)

¥ L?€€4+W+L§’—I El““}"”"!‘l + L v/ B;
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d'oli, & cause de l'ambiguité da signe du radical v B
sur-le-champ

<fﬂ #VB>><:(G T B VB)><< £ ,,+l),,
A E:"

2B

#. o VB T T v H'¢/B\"
e —-— _ I (G  —H B K —
(}‘ E#+1> ( % )x<: Er+1>

2B

7x
s on tire

=

| (F"‘+Lpif‘)><(G +H ¢/ B)x K"-f—“ Vf")
il
2B

— [ F¥— s B4s B L S PEL
( rp@—l) ( v )X<K Ol e

2, B

fp étant, comme plus haut, = x - ny 4=,

61. On peut aussi-remarquer que la valeur de L° peut se dé-

. T :
terminer par le moyen de celles'de £ et # ', sans avoir besoin
d’un pouveaun calcul.

B
En effet, ayant x = ° +E,V e VBE_E s et de méme

_ Ef
2 =-—""" on aurd par I’Lquatlon (G) du n° 51
VB—-EE 4
N T A T e
v B—% LEE?—!—L?-—I(VB_.E?),

savoir

E(E + 7' (YB—¢)) = FE (‘/B—e)
TR T (PR

de sorte quen comparant la partic rationnelle avec la rationnelle M
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et Virrationnelle avec lirrationnelle , on aura
e — FE—F71 £44
e E

LE’ EE’_:L?—I Eg’=-—l?E?£+Z?E—:—1 (B+95?__2;

d'oi1, 3 cause de B—( ) = E £ T, on aura

¢ —B(Ef—e) 4 B !
— E —

Or, p étant = p ~- 7y 4+ =, on aura

EE'__:E[“‘FW, E?+1 =EF+”'+1;

de sorte que ¢ et E' " seront connus s quel que soit le quane
tieme p.

62. Supposons, pour donner un exemple de I'application des
formules précédentes , qu'on demande la racine carrée de %* par
une fraction continue

Faisant x = /%!, on aura I’équation 3 a* — 11 = 0 donc:
(p°52)E =11, E =3, ¢==o0; ainsi on fera le calcul
suivant, en prenant B — 33, !

L. 11

i Dy :55_.0=5, WA Ak

i 3 = =1 .3~0=73%

E =55;9=8, A" <—‘~/—56:8-_!-—5=1, £ =1 .8—5=5

E" :53_25-—’-1 Ay K@l«ﬂ=10, g 10.1—5=5

3 . e g

Fr — 33—ab 8

1 2

?\“’<.‘{§%—ﬂ—_-—.l, &Y 1 . 8—5=3

%5 = .
) Pt 58 = s N ‘/335—_’-—3:2, A = R

Je m’arréte ici, parce que je vois que ' = E’ et ¢ = ¢; de
sorte que jaurai, dans ce cas, w==1 et'y = 4; et par consé-
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quent

1

' etes

63. Telle est done la fraction continue qui exprime la valeur
de (/%5 mais si on veut trouver les fractions convergentes vers
cette valeur, on fera dans les formules du n° 6o sk =1, p=14%,
et comme = doit &tre << 4, on fera successivement w =o, 1, 2, 3.
On aura done " = 7 — (form. A, n° 47) » =
B 1L 2 ,

U==1
l=1;¢ =éd =3, E*T

»

Z = E' = 8; donc
% L

= (n® 60) 4 4~ 1 =11: on tronvera de méme L” = 1,

12 ~ . *

F" = J. Ensuite on calculera les valeurs de H, H

qua H = H* par les formules (C) du n° 48
H 0
H I
15 b A"H = 10
H" AYHT - B =
H' = \H” . H =33,

» efe. jus-

» €t l'on trouvera

iy re—1 y _
'ou H =3%a, H =11, etdeld K-ozdaa L 'Yy o am

- 3 T ey
Maintenant soit, 1°, w=0, on aura ' =—=o0 et H cekiy 4
car il est facile de voir par la nature des formules (C) que le terme
qui précéderait H, serait nécessairement — 1 : e effet, on doit

: y : 1 —1 3
avoir par 'analogie H' = \*T' g <+ H_ ; on prouverait de méme

que le terme qui précéderait %, serait — 0; donc G” = E* 1! =38,
. T T—1
2°. Soit =1, onawraH" =1, H =8 ; done

G T L= h;
3°. Soit @ = 2 ; done
el vl w3 5
H=10,H" '=1,G"=10"*" g =10¢ J-E"=58,

10
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4°. Soit.w =3, donec

e, B =10, o G” = 11" - 10 EY = 63.

Donc , substituanf ces valeurs dans les expressions de LetLf
du n° 6o, et multipliant ensemble , pour plus de simplicité , les

. ~ " ['PIL B 7 -
deux facteurs f‘"’i——v_i_—l ) ¢  =H t/ B, comiile aussi les
E-

£ oht 4 vB YSARM} - fa Fii )
deux F* = E—_Vr_-—;, G"=H" {/B, ce qii donneé ces facteurs
simples

- H™ B - * 6"

R D
;?) s

l'f.
E

on aura les formules suivantes :

A (11 4+ /33) (23 F 4y/33)" — (11 = 1/23) (23 — 41/33)"
e g 33

i B VD OB 4V B /55) (O — YT

2/ 33 )

Jinta — (11 .2 V/33) (23 + 4V/33)" — (11 _~—2 V/33) (28 — 4y/33)"
2/ 33

fnFs — g% 4 /33 (83 S 4YEE = (6 = /33) (23 == 41/33)"
o \/ 33

Jires (121 + 214/33) (23 + 4y/33)" — (121 — = 1/33) (23 — 4y/33)*
: 2y 33

Lir+d e (63 + 111/35) (33 + 4V/33)"— (63 —111/55) (23 — 41/33)*

et 2 {/33

s (B a5 (0B AV (5 = aBY/TD) (B — 4V
LA 2/ 33

Lis+4 — (69 =+ 121/33) (a3 4+ 4V/33)" — (6a — 12V/33) (23 — 4V/33)"

s 21/ 33 >

au moyen desquelles on pourra frouver la valeur de chacune

’ i ]W

des fractions 175 17r 132 eto. convergentes vers la racine de %
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‘Ainsi, faisant d’abord 7z = o0, on aura les quatre premiéres

fractions ; faisant ensuite 7 ==1, 'on aura les quatre suivantes,
et ainsi de snite ; et ces fractions seront

21 23 56 9o g67

S 12’ 357 47- 5ob " . elc.
Si on voulait avoir, par exemple, le cinquantiéme terme de
: . < . [ et r T
cette série , c’est-a-dire la fraction 15 il p’y aurait qu’a di-
viser 50 par 4, ce qui donne 12 de quotient et 2 de reste; et

Ton ferait » =— 12; de sorte qu'en déVeloppant la pulssanca
douziéme de 23 == 4 v/ 33, et faisant pour abréger

M = (23)"+- 66 (33) (4)*.(23)" 495 (33)".(4)*.(23)*
+924.(35)° (4 (25)° + 495 (35)' (4)".(23)*
~+66.(33)° (4)°(23)* +(83)° (4)*»
N = 12 (4) (23)" = 220(33) (4)* (23)° 4792 (33)* (47 (2_5)’
~+ 792 (39)° (4) (23)°+ 220 (35) (4)° (23)° + 12 (35)° (4)" (23),
on aura
(25=+=4y33)=M=N ¢/33;

donc, substituant cette valeur dans les expressions de J¢"+* et

Lér*2, on aura, pour la fraction cherchée ,

sM4+ 11N

M+6N °
‘64.'Je vais terminer cefte remarque par une observation qui
me parait digne d’attention. Lorsque I’équation proposée a .des
diviseurs commensurables du premier degré, alors les fractions con-
tinues qui représenteront les racines de ces diviseurs, seront néces-
sairement terminées ; et-lorsque I’équation aurades diviseurs com-
mensurables du second degré 4 racines réelles, alors les fractions
continues qui exprimeront les racines de ces diviseurs seront né-
cessairement périodiques. Ainsi la méthode des fractions continues
a non-seulement I’avantage de donner toujours les valeurs ration-
nelles les plus approchantes qu ’il est possible de la racine cherchée,
mais elle a encore celui de donner tous les diviseurs commensu-
rables du premier et du second degré que I’équation proposée peut
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renfermer. I serait & souhaiter que I’on piit trouver aussi quelque
caraclere qui pit servir a faire reconnaitre les diviseurs commen-
surables des troisieme, quatrieme, etc. degrds, lorsqu’il yena dans
I'équation proposée; c’est du moins une recherche qui me parait
tres-digne d’occuper les Géometres.

ARTICLE IIL
Géncralisation de la théorie des Jractions continues.

65. Nous avons supposé dans le chapitre TTT que les nombres
P> g, r, etc. étaient les valeurs entieres approchées des racines
x,y, z, etc. mais plus petites que ces racines, c’est-a-dire que
Ps g, 1, etc. étaient les nombres entiers qui seraient immédia-
tement plus petits que les valeurs de =, y, z, ete.; cependant il
est clair que rien n’empécherait qu’on ne prit pour p, g, r, ete. les
nombres entiers qui seraient immédiatement plus grands que les
racines x; y, z, ete.

66. Tmaginons done qu’on-prenne pour p le nombre entier qui
est immédiatement plus grand que x, ensorte que p > Z, et

P— 1 < z,il est clair qu’il faudra faire dans ce €as T =gp sy
&
c’est-a-dire qu'il faudra prendre y négativement, et comme x = p

2

et >p—1, 0n aura; > o et <<®, et par conséquent y > 1 .

comme dans le cas ot I'on aurait pris p plus petit que 2 (n° 18),
Ainsi on pourra prendre de nouveau pour ¢, le nombre entier
qui serait immédiatement plus petit que Y, ou celui qui serait
immédiatement plus grand , et l'on fera dans le premier cas

1 1 = . 3
y =4q + - et dans le second, y =g — =+ ¢t ainsi de suite,
De cette manitre on aurait donc

x.—:pii, y:qi—;-,

ce qui donnerait la fraction continue

1

| e i

elc,
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ol il est bon de remarquer que chacun des dénominateurs g, 7, etc.
qui sera suivi d’un signe —, devra nécessairement &tre =2 on > o

. . 7 1 ey
car, pulsque y > x, si on fait y =¢—~, on aura g—=->1,

1 »
done ¢ > 1 ~+- donec ¢ devant &re un nombre entier, sera

nécessairement — 2, ou < 2; et ainsi des autres.

67. Jobserve maintenant que ces sortes de fractions qui  pro-
cedent ainsi par addition et par soustraction , penvent tonjours
facilement se changer en d’autres qui ne soient formées que par
la simple addition.

En effet, supposons en général

a, et A devant étre des nombres entiers s et £, T des nombres

. 1
plus grands que l'unité; on aura donc @ — A — -+ %, done,

. 1 1 1 1
puisque - < 1, et T<TI, 3 +T sera < 2; donc on ne pourra

supposer que @ — A = 1, ce qui donne A — 4 — 15 on

1 1 1
auradonca——;:a-—I-i—;l—,;donc,l—, I — -, et
1

t , .
T = f—1 =1+ 5 de sorte qu'on aura en général

1 1
a ——= ———=q—1 ——— 1
t +: + — s
\ to=ts
et cette formule servira pour faire disparaitre tous les sigues —
dans une fraction continue quelconque,

Soit, par exemple, la fraction

1

p—

¢
rEele:

elle deviendra en ‘faisant gz — Pyet i =g i %, ete,

Pk
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Si l'on avait la fraction

1> r
elle se changerait d'abord en

P—I‘i"i—_}:‘_
q—

el ensuite en

1
P—'I"I-ﬁ 1

qg—2 Lo X L
L T,

et ainsi des auntres fractions semblables. Il est bon de remarquer
qu'il peut arriver que, dans ces sortes de transformations, quelqu’un
des dénominateurs devienne nul, auquel cas la fraction deviendra
plus simple.

En effet, supposons que la fraction 4 réduire soit

la transformée sera

P'—1+i—+'1

c’est-a-dire

De méme, si 'on avait la fraction

1
A 2
o T Bf.c-
elle s¢ réduirait a celle-ci

savoir

et ainsi du resfe,
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68. La formule que nous avons trouvée ci-dessus , et qu’on peut
mettre sous éetté forme

ey
R e 1
1 - — Q& ——
i i + 1 I 1
fait voir qu'une fraction continue dont tous les termes ont le
signe -}-, peut quelquefois étre simplifiée en y introduisant des
signes —; c’est ce qui a lieu lorsqu’il y a des dénominateurs égaux
a 'unité; car soit, par exemple, la fraction

1
P
L TR ete:

elle pourra se réduire par la formule précédente & celle-ci

1
I ]
p + g r + 1 etc_
qui a, comme l'on voit, un terme de moins; donc si 1'on avait
la fraction
1

g
l+1+%etc.

elle se réduirait 3 celle-ci

1
o s e el
B s €fe, ,
et si I’on avait celle-ci

1
e S
e,
elle se réduirait d’abord a '

]
R + P 2 4 -——-—1 1
R
et ensuite a
3

P41 — ;

T

Dou il est facile de conclure, en général, que si on a une
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fraction continue qui w’ait que des signes -, et ot il y ait des
dénominateurs égaux a l'unité, on pourra toujours la changer
en une autre qui ait autant de termes de moins qu’il y aura de
pareils dénominateurs, pourvu qu’ils ne se suivent pas immédia-
tement; car, lorsqu’il y en aura deux de suite , on ne pourra
faire disparaitre qu'un seul terme ; lorsqu'il y en aura trois de
suite , on pourra faire disparaitre deux termes; et en général, ¢’il
yenaa2n, ou 212 - 1 de snite, on ne pourra faire disparaitre
que.7;z ou 7z —+ 1 termes.

Ainsi, la fraction continue qui exprime le rapport de la cir-
conférence au diamétre étant, comme l'on sait,

5 4 1
7+]5+1-i‘1 .
92 - 1
T FL

2 "+— ch.

elle peut se réduire a une autre qui ait déja trois termes de moins,
et qui sera

5+I 1 ’
b — 1

234—--5__ 1
e elc.

Fidr =

69. Pour pouvoir comprendre sous une méme forme générale
les fractions continues ou les signes sont tous positifs, et celles
" ? S
ou il y a des signes négatifs, il est bon de transformer ces der-
nieres, ensorte que les signes négatifs n’affectent que les déno-
minateurs; ce qui est trés-facile; car ayant , par exemple, la
fraction '
1
P T ;
5 + efc.

il est clair qu’elle peut d’abord se changer en
P

-—--q'n_
o
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ensuite en celle-ci

Pt ——

—_ —_—
T —rw 5 + etes
et ainsi des autres.
De cette manitre , la forme générale des fractions continues
dont nous venons de parler ci-dessus, sera

1
—_—
p+q+,7"_—’.etc.

les nombres p, ¢, r, ete. étant tous entiers » Mais pouvant &tra

positifs ou négatifs, an lien que jusqu’ici nous

les avions tonjours
Supposés positifs.

Il faut cependant remarquer que, si quelqu’un des dénomina-
teurs ¢, r, ete. se trouve égal & l'unité prise positivement o

négativement, alors le dénominateur suivant devra &ire de méme
signe ; c’est ce qui suit de ce qu'an dénominateur positif, et égal
1 3 s, r . . . A TR a

a l'unité, ne saurait jamais étre suivi du signe — (p° 68 ).

70. Il s’ensuit de 14 que la  méthode d’approximation donnée
dans le chapitre TIT, peut étre généralisée en cette sorte,

Soit x la racine cherchée, on prendra d’abord pour p la valeur
enticre approchde de z, c’est-i-dire qu'on fera p égal & I'un deg
deux nombres entiers entre lesquels tombe la vraie valeur de x,
€t qu'on peut toujours trouver par la méthode du chapitre Ter

L 1 -
Von supposera ensuite =p - 7* e qui donnera une transfor-

mée en y qui aura nécessairement une racine positive on néga~
tive plus grande que l'unité; on prendra de méme: pour g la
valeur entiére approchée de y, soit plus grande on plus petite

que y, etl’on fera y =g - ;; et ainsi de suite,

Si I’équation en z avait plusieurs racines » on ferait sur leg

transformées en g, enz, en » €tes des remarques analogues %
celles du n° 19,

Ayant donc' ' _‘ Tg {

x;—;p-{- sy Y =q -, z:r-—{.—}‘,etc.

Ix

S TR ey e i

S e

B e

ST e
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on aura
1

2 1
2 9 Tipgietes
o les dénominateurs ¢, r, etc. pourront étre positifs ou négatifs,
comme nous I’avons supposé ci-dessus; et cette fraction pourra
ensuite se réduire, si 1’on veut, A une auntre dont les dénomi-
nateurs soient tous positifs, et qui ne contienne d’ailleurs que des
signes 4 (n° 67).

I’avantage de la méthode que nous proposons ici , consiste en
ce quon est libre de prendre pour les nombres p, ¢, 7, etc. les
nombres entiers qui sont immédiatement plus grands ou plus petits
que les racines x), 3, z, ele., ce qui pourra souvent donner lieu
a des abrégés de calcul dont nous parlerons plus bas.

Au reste, si on veut avoir la fraction continue la plus courte ,
et-par conséquentla plus convergente qu'il soit possible, il faudra
presdre tonjours les nombres p, ¢, 7, etc. plus petits que les ra-
ginés =, y, %, etc. tant que ‘ces nombres seront différens de
Punité ; mais, dés que l'on en'trouvera un égal a l'unité, alors
il faudra avgmenter le précédent d'une unité, c’est-a-dire qu’on
Te prendra plus grand'que la racine correspondante ; cela suif évi=
demment, de ce que nous avons ‘démontré sur ce sujet (n° 68 ).

71, Maintenant ; si on fait’ comme dansle n® 25,

B=oag -1
y=pr+a ; S
dz= ys 418 ¢ ‘s = [

efcotndnt 9o ete.

on aura, en ajoutant au commencement la fraction § qui est plus
grande que toute quantité donnée , les fractions

& p2 J

B

7.3 5’7, };, ete.

1 (-4
'bc-l 3 : 2
}esqueﬂes seront nécessairement convergentes vers la valeur de x.

Et pour pouvoir juger de la nature de ces fractions , nous re-
marqueroas , ;
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1% Que l'on aura toujours

a0 — 12
Ba' — af
B — By
&y — 34"
elcs

d’ou P'on voit que les nombres &, &', 8, £, etc. n'auront aucun

diviseur commun, et que par conséquent les fractions %, g,, etc,
seront déja réduites & leurs moindres termes.

2°. Que les nombres a, 3, ¥ etc. et o'y £, 3/, etc. pourront
étre positifs ou négatifs ; lorsque la valeur de = est positive , les
deux termes de chagque fraction seront de méme signe , mais ils
seront de signes différens lorsque la valeur de z sera négative ,

et qu’abstraction faite de leurs signes , ces nombres iront en ang-
mentant. -

~ 'y x (o 1 s 1 .
3°. Que l'on aura, i cause de x..ﬂp-}-;,_y.._q—l—;,etc.

ay = 1
oy
Bz 4 a
e+ B
?(u_l__ﬁl

r =
x =

N

ete,

n2, Donc, en général, si =, p; ¢, sont trois termes consé-
s
cutifs quelconques de la série a, 3,9, etc. et 'y ¢, ', les termes
- .
'e, i solenf
trois fractions consécutives convergentes vers la valeur de B
on aura

L [ 3
correspondansde la série o/, &/, 9/, etc. ensorte que —, g

p’ —mpf =1, et op —=pol==1,
les signes supérieurs étant pour le cas oit le quantiéme de la frac:

tion ‘:—, est impair, et les inférieurs pour celui ot ce quantidme

SCD Lyon
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est pair, a compter depuisla premiére fraction I; de plus, on
aura (abstraction faite des signes)

fom By @ P B0, G g

enfin, si on dénote par z le terme correspondant dans la série
x, ¥, %, etc. on aura rigoureusement

it
F_-f"l:—!-fr.

It si % est la valeur entiere approchée de #, soit plus grande ou
plus petite que Z, on aura

oc=rk4t+m, ¢ = ¢’k -7
73. Cela posé , considérons la fraction E,, et voyons.de combien

lle differe de la vraie valeur de @ ; pour cela, nous aurons

L g 1 1
= b e

e. ¢
0

—
f’

donec &= e
¢ TV ita)

. . 1 .
Ainsi erreur sera F sy OFs S B et 641 sont les deux

nombres entiers entre lesquels tombe la vraie valeur de ¢, il est
clair que la quantité ¢z 42’ tombera entre ces deux P47, et

¢ (6+1) 4 =, et qu’ainsi l'erreur de la fraction ;;, sera renfermée
entre ces deux limites

‘I.

1 =
FriEay S Fgar o Ty

Or, on peut prendre A=48, ou k=1™9-1; de sorte que l'on aura
o = h4a’, ou =¢84 1)+ a'; d’ou je conclus que si, pour
distinguer les deux cas, on nomme ¢’ le dénominateur de la frac-

tion qui suit 5;—,, lofsqu’on prend la valeur approchée de # en dé-

faut, et Z' le dénominateur de la méme fraction , lorsqu’on prend

Jda valeur approchée de 2 en exces, l'erreur de la fraction ;—, sera




»
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. AR 1

nécessairement renfermée entre ces deux limites == 7 et :,:%
§ ¢

Dot Ton voit que V'erreur ira toujours en diminuant d’une

fraction & lautre , A cause que les dénominateurs ¢ ou X, ete.

vont nécessairement en angmentant. On voit'aussi, & cause de

. . 2 5
o >p et 3'>¢, que lerreur sera toujours moindre que 5= ;

i
¢
c’est-a-dire que Verreur de chaque fraction sera moindre que I’

unité
divisée par le carrée du dénominateur de celte fraction. I’

ou il
est facile de conclure que la fraction? approchera plus de la va-

leur de x, que ne pourrait faire aucune autre fraction quelconque
qui serait concue en termes plus simples; car supposons que la

fraction ’—":- approche plus de @ que la fraction f—, s 7 étant <jg,

it 7
comme la valeur de 2 est contenue entre 7 et 5,-—!—'—,—2,011 entre
g

¢ ) S ! m . .
J o i il faudra que la valeur de —soit pareillement conte-
$

. . . e m 1
nue entre ces limites; donc la différence entre 7 et —devra étre <—;

d [4

4 / E

- . Tp =—m ’ .
mais cette différence est -f-?-n—P, dont le numératevr ne peut ja-

mais &ire moindre que l'unité, et dont le dénominateur sera né-
cessairement plus grand que ¢, & cause de f’>n; done, ete.

74. On doit remarquer, au reste, que si les dénominatenrs
ey £, 9, etc. sont tous de méme signe ou de signes alternatifs ,
les erreurs seront alternativement positives ou négatives; de sorte

Shy 8 -
que les fractions %, 5 ;4,, etc. seront alternalivement plus pe-~

tites et plus grandes que la véritable valeur de x, comme nous
Yavons dit dans le n° 25; mais cela cessera d’avoir lieu lorsque
les nombres a’, &, 5/, etc. ne seront pas deux a denx de méme
signe ou de signes différens; c’est ce qui arrivera nécessairement
lorsque,, parmi les dénominateurs g, r, s, ete. de"la fraction
coptinue, il y en aura de positifs et de négatifs, C’est-a-dire ,
lorsqu’on prendra les valeurs approchées de x, 3, z, etc. tantdt
plus grandes, tantdt plus petites que les véritables.

' : : i i ls .
75, Si, aulieu des fractions convergentes —, =, %,, etc. on ai-

e

cam=ss e nri 3

e

e LM o At
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mait mieux avoir une suite de termes décroissauns, on remarques=

- 2 & ,8::,’——1,6’__ S
rait que ?ﬂ::ﬁ—;jf?r—'-—w;rg,, et de méme

¥ ¢ 1 d 9 1

Y TE=TE Py

et ainsi de suite; d’ou l'on tire, & cause de &' =1,

1
= ad S
+ oz
1 1
LT TER
1 I

+3jq7r

R NN SR

1
‘e

et, en général,

1

¢ — e R TR ST g e
Q’I = d + alﬁf B/j’f +?1J( etc- =) W’P”

Ainsi on aurapour la valeurde x la série o -[-—‘%ﬁ,-—— 6_’15:’ -}~ etc. la-

quelle en approchera d’autant plus qu'elle sera poussée plus loin;

et si apres avoir continué cette série jusqu’au terme quelconque

1

==——, on veut savoir de combien elle différe encore de la vé-
r

ritable valeur de x, on sera assuré que l’erreur se trouvera entre
s 1 SRt r
ces deux limites == 7 et F (n° 73), de sorte qu'elle sera né-

. . 1
cessairement moindre que 7
76, Il est & remarquer que chaque terme de la série
4 + —— 7 + et
6&’@’ ‘@I}}' elc.
répond & chaque terme de la fraction continue

1
Podiatar
g—i—r -+ etc.

d’on elle dérive; de sorte que la série dont nous parlons




DES EQUATIONS NUMERIQUES. 8
plus ou moins convergente, suivant que cette fraction le sera.
Or nous avons donné plus haut (n° 68) le moyen de rendre une
fraction continue la plus convergente qu'il est possible ; donc on
pourra avoir aussi la suite la plus convergente qu’il soit possible.

Ainsi, pour avoir une suite qui soit la plus convergente de toutes
vers le rapport de la circonférence au diamétre, on prendra la
fraction continue qui exprime ce rapport; et aprés l'avoir sim-
plifiée comme nous I'avons fait (n° 68), on la mettra sous la forme
suivante :

5—"'1'—-_1_1
T

1

T T

1

-— 3 4 efe.

de sorte qu'on aura p=—3, g=17, r=16, s=— 294, etc.
donc on trouvera (n° 71)

=1, =79,3% =7.16 4 1 = 113,
FIone— 204 + 7 = — 33215,
— 33215 X 3 4 113 = — 99532,

= ~— 99532 X — 3 — 33215 = 265381, elc.

de sorte que la série cherchée sera

1 1 1 1
e T 713 113.33215

1
7 33215.99532  9g532.265381 ° £hds

ARTICLE 1IV.

Ou Pon propose différens moyens pour simplifier le calcul des
racines par les fractions continues.

. o e
77. Nous avons trouvé en général (n° 72) que si = et - sont

§
deux fractions consécutives convergentes vers la valeur de ¥,

t 4+
on aura m:’m

dans 1'équation en « dont on cherche la racine, on aura une

: donc si on substitue cette expression de 2

SCD Lyon 1
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transformée en ¢z, qui sera nécessairement la méme que celle qu'on

aurait eue par les substitutions successives de p —f—yi a la place de
Xy de q—}—é a la place de y, etc., et pour avoir la fractionm

. o . .
suivante —, il faudra trouver la valeur entitre approchée de 7,

laquelle étant nommée %, on aura
c=kp+=, o' = k¢ - 7',

De cette manitre, connaissant les deux premitres fractions =

d'f

8 Sail . ; P ' -
et 7 qQu sont foujours 3, et T (n° 71), on pourra trouver suc=

cessivement toutes les autres, a I'aide de la seule équation en x.

78. Or, soit qu’on emploie les substitutions successives de
P -{—yl a la place de =, de q-—l—-lz a la place de y, ete. soit qu'on
fasse usage de la substitution générale de ;—%—7—: a la place de z,
la difficulté se réduira toujours & trouver dans chaque équation
transformée, la valeur entiere approchée de la racine positive
ou négative , au-dessus de I'unité que cette équation contiendra
nécessairement ( n° 70 ). Si la premiére valeur approchée de p
ne convient qu’a une seule racine, alors toutes les équations
transformées en y, en z, etc. n'auront chacune qu’une seule
racine plus grande que 'unité; de sorte qu’on pourra trouver les
valeurs entitres approchées de ces racines par la simple substitu-
tion des nombres naturels (n° 19). Mais si la méme valeur ap-
partient & plusieurs racines, les transformées auront nécessaire-
ment plusieurs racines plus grandes que l'unité, soit positives
ou négatives, jusqu’a ce que l'on arrive a une de ces transfor-
mées qui n’ait plus qu'une pareille racine; car alors toutes les
suivantes n’en auront plus qu'une seule au-dessus de I'unité ,
eomme nous 1’avons démontré dans le noméro cité,

Avant d’étre parvenu a cette transformée , il arrivera souvent
que la simple substitution des nombres naturels ne suffira pas
pour faire trouver les valeurs entitres approchées dont on aura
besoin , parce que l'équation aura des racines qui différeront




DES EQUATIONS NUMERIQUES. 8
entr'elles par des quantités moindres que V'unité. Dans ce cas
donc, il semble quwil faudrait avoir recours & la méthode géné-
rale que nous avons donnée dans le chapitre premier; mais, ayant
déja employé cette méthode pour trouver les premiéres valeurs
approchées des racines = de 1’équation primitive, on pourra se
dispenser de faire un nouveau calcul 3 chaque ¢quation transfor-
mée ; c’est ce qu'il est bon de développer.

79. En faisant usage de la méthode dont nous parlons, on
trouvera d’abord les limites entre lesquelles chaque racine réelle
de I’équation proposée sera renfermée, ensorte qu'entre deux li-
mites trouvées, il n’y ait qu’une seule racine (n° 13},

Soient A et A les limites de la racine cherchée; I’espression
g s ~ donne # =-——~W,x—,?r; done la valeur de 7 sera renfermée
gt g—gx

s 7
entre les limites S T
limites différent 1’'une del’autre moins que de Vunité, on aura sur-
le-champ la valeur entitre approchée de 7; mais si ellesdifferent
P'une de l'autre d'une quantité égale ou plus grande que I'unité,
alors ce sera une marque que la racine cherchée # différera des
autres racines de I'’équation transformée en 7z par des quantités
égales ou plus grandes que l'unité; de sorte qu'on sera sir de
pouvoir trouver la valeur entiere approchée de cette racine,
par la simple substitution des nombres naturels & la place dez;
et la méme chose aura lieu, A plus forte raison dans les trans-
formées suivantes.

X =

Xy 7N —,

par conséquent , si ces dernitres

80, La formule 1!="’L_ffz eut étre aussi tres-utile pour ré-
p—¢x P P

duire en fraction continue toute quantité x qui sera renfermée
entre des limites données, au moins pour frouver les termes de
cette fraction qui pourront étre donnés par ces limites; car nom-

mant , comme ci-dessus, A et A les deux limites de x, on aura
TN — ’/T’A—-W

e e 7 R celles de 7 ; de sorte que, tant que la dif-

férence entre ces derniéres limites ne sera pas plus grande que

Panité , on pourra trouver exactement la valeur entiére de Z:
F P :

12
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ainsi, prenant % et “I’ (p étant la valeur enticre approchée de x )

pour les deux premitres fractions, on pourra pousser la suite des
fractions convergentes, et par conséquent la fraction continue
jusqu’a ce que les limites dont nous parlons différent entr’elles
d’une quantité plus grande que l'unité; alors il faudra s’arréter,
parce que les limites données A et A ne comporteront pas une plus
grande exactitude dans la valeur de .

Par ce moyen, on n’aura jamais i craindre de se tromper en
poussant la fraction continue plus loin qu'on ne doit, comme
cela arriverait facilement si, pour avoir cette fraction, on se
contentait de prendre un des nombres A ou A, et d’y pratiquer
la méme opération dent on se sert pour trouver la plus grande
commune mesure ; conformément i la maniére usitée de réduire
les fractions ordinaires en fractions continues.

Pour pouvoir employer cette méthode en toute sureté , il fandrait
faire la méme opération sur les deux nombres A ou A , et n’admettre
ensuite que la partie de la fraction continue qui proviendrait éga-
lement des deux opérations; mais la méthode précédente parait plus
commode et plus simple.

81. Voyons maintenant d’autres moyens pour simplifier encore
la recherche des valeurs entiéres approchées dans les dlﬁ'erentes
équations transformées. Soit

P — @l - b — etc. = O

une quelconque de ces équations, dans laquelle il s’agit de trouver
la valeur entiere approchée de #, que nous désignerons en général
par k& ; cette équation étant dérivée de 1’équation proposée en x,
sera du méme degré que celle-ci, et aura par conséquent le méme
nombre de racines que nous supposons égal & .

Nous avons trouvé en général (n° 79 ) ¢ =
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le quantieme de la fraction g—, est pair , et I'inférieur pour celui
ol ce quantieme est impair; donc on aura

%I

i=i-—-—-Tl—-——?,.
fg _{_-x
A

Done, si on dénote par x la racine cherchée , ef par 2/, 2", ete.
les autres racines de I’équation en 2, qui sont au nombre de 7,
et qu'on dénote de méme par z, ¢, ', etc. les valeurs correspon-
dantes de £, on aura

Mais I’équation en ¢ donne @ = ¢ - ¢ =~ " - etc.; done
substituant les valeurs de #/, ¢, etc. que nous venons de trouver,
et qui sont au nombre de 7 — 1, on aura

-~ - etc.
— x" y
o

Or nous avons trouvé (n°® 73) < =2 == ————, ou bien en
(D5 )e ¢ (¢'t+a)’

faisant p't 4 o' = L¢’, -:7 = s 1—1,—2 » ou 'on remarquera que
g

f't = @ étant renfermé entre les limites ¢’ et =', qui sont 1'une
et I'autre plus grandes que p’(n® 72), la quantité J sera nécessaire-
ment plus grande que Punité. Done, faisant cette substitution dans

4
t_(n_.,l)';r

E—— s =

&
!
|
§.
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la formule précédente, on aura
(n—1)a"
t=a - —

g
1

$<I 11 +1+f H+I+Etc.
e maf) i e’ J

Mais les quantités x — a', 2 — 2", etc. sont données , et la

1
<3
est toujours moindre que l'unité, il est clair que chacune des
quantités

uantité ¢’ va toujours en augmentant; done puisque la fraction
q i ] g ’ puisq

1 : 1

etc.
> ,)+1’ ¢ (2 x,,)+1’
e (x—2a") = — —F") &= —

+ +

ira nécessairement en diminuant , et que par conséquent la somme
de ces quantités qui sont au nombre de 7 — 1, ira en dimi-
nuant auwssi; de sorte qu’elle deviendra nécessairement moindre
que 3.

Donc on parviendra nécessairement 4 une équation transformée

. \ , \ n—1)a
telle, que sa racine # sera, a £ prés, égale & a 4- S__T)—— (a étant

le coeflicient du second terme pris négativement ), c’est-a-dire que
cette racine sera contenue entre les limites

a +

— 1Y L
ﬁ72_+%ﬁa+ﬁﬁgl_%,

et la méme chose aura lieu & plus forte raison pour toutes les
transformées smivantes.

Donc , dés qu’on sera parvenu a une pareille transformée, il
n’y aura qu'a prendre le nombre entier qui approchera le plus de

- n—1)a o : :
la quantité ¢ - g——f—,)-—, c’est-a-dire , celui qui sera contenu
entre les mémes limites

r ’
a e ETIYT L T o B ITE

¢ ¢ 3

et ce nombre sera nécessairement un des deux consécutifs , entre
lesquels se trouvera la vraie valeur de ¢, de sorte qu’il pourra étre
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pris en toute sfireté pour la valeur approchée & (n° 77). Ainsi

on pourra continuer I'approximation aussi loin qu’on voudra saris
le moindre titonnement.

82. Puisque @=¢ - ' 4~ 1, etc. en substituant les valeurs de 2,
¥, ¢, ete. (n° 81) on aura’

1 155 1 na’
@ = == ~ etc. | — —,
£ L.....x il £
3

¢
Or soit

T — Az’Z' -~ Ba"T* — etc. = 0
Péquation proposeé; qu’on fasse le premier membre de cette éqna-

tion égal 4X, il est facile de voir, par la théorie des €quations,
. dX : e
que la quantité Xa, deviendra, en y mettgnt 7a la place de =,

apres la différentiation,

-;-P1 L S T
i o) -

.5 it |
¢ ¢
a cause que x, 2/, &, etc, sont les différentes racines de I'"équation

dX I e 3 !
X = 0. Donc on aura ¢ — = T =7 “et par conséquent
¢*Xdx e ? P

la quantité o 4 (—n—-_—';;l—)—l deviendra
dX o’

Gk e TR
Done, si on fait

. R e (n—1)Ae" 2 L (n—2) Be"~ %% —etc,
] ¢ — A" T - BT ¢* — etc 4

e : A =R —7 : Ay
la quantité dont il s’agit sera = ~ ; par cons¢quent les limites

dont nous avons parlé dans le numéro précédent , seront

=R —a . =R —a
I reaebaciy e Sed gkl

Ainsi on pourra trouver ces limites indépendamument de I’équation

SCD Lyon 1 ;
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transformée -en #, -et par le-seul moyen de I’équation proposée
en -z, ce qui pourra servir.a abréger le calcul.

85. 1l reste maintenant & voir comment on pourra reconnaitre
si la ragine ¢ est renfermée entre les limites dont il s’agit; or
cela est facile des qu'on connait les deux nombres entiers consé-
cutifs 8, 8 4- 1, entre lesquels se trouve cette racine ; car , soient
A 1et A — 3 les deux limites données, il ‘est clair que, pour
que ¢ se trouve entre ces deux limites, il faudra que A tombe
entre les mémes nombres 0, § 4 1, et méme plus pres de celui
de ces deux nombres, dont # approchera davantage. On exami-
nera donc, 1°. si A tombe entre 6 et 64— 1; 2°. cela étant, on
prendra celui deices deux nombres dont A approche davantage
pour la valeur approchée de 7, que nous nommerons &, et fai-

1 . el
sant ' = % -+ s OB Verra si I'équation transformée en 2 a une

racine positive ou négative plus grande que 2 ; si cette seconde
condition a lieu, on sera assuré que la racine ¢z tombera réelle-
ment entre les limites A ~- 1 et A — 1 ; et on pourra poursuivre
le calcul, comme nous I’avens dit dans le n°® 81.

84. On pourrait s’y prendre encore de la manicre suivante.,
pour s’assurer si la racine z tombe entre les limites A - 2 et A —Z,
11 est facile de voir par le n° 81 que la difficulté se réduit 4 savoir

- . 1 1 e
si la somme des quantités -3 » etc. divisée par p*,
S w— e —
¢ ¢
est moindre que ;; ainsi il ne s’agira que de trouver une quantité
qui soit plus grande que cette somme, et de voir ensuite si cette

‘o

quantité est moindre que .

Or solent x, ', 2, etc: les racines réelles de 1’équation pro-
posée, que nous supposerons au nombre de u; et

§+‘L‘/"‘"‘, E—"l’\/“‘l:
g+ \V\/— I, g — Ly — 1, ete

les racines imaginaires que nous supposerons au nombre de 2,

ensorte que p = 2y = n; comme la fraction yi,diﬁ'ére de la ra-
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R : 1 " 4 :
cine x d’une quantité moindre que o (n® 73), il est clair que si A
est une quantité égale ou moindre que la plus petite des diffé-
rences entre les racines réelles de la méme équation, chacune

Sy ’ 1 1 .
des quantités réelles » etc. sera nécessairement

¢

moindre que » et par conséquent la somme de- ces quan-

1
A= o

£

> . : . Ty =1
tités, qui sont au nombre de u — 1, sera moindre que —

A=

1
TRt
Considérons ensuite les quantités imaginaires, lesquelles seront
deux a deux de la forme

1 1

e - s p s
g—,—ﬁ—«!u\/—l ;,——-E-F«LV——!

3
2 ('-,""' E)
de sorte qu'on aura v quantités de la forme : b 5 or
Cogiohe

je remarque que, quels que soient les nombresf'i,, £ad43a

e
(4=9
quantité ———7 sera toujours moindre que i; en effet, si
(S—t)+4 +

. g 2 . .
on considére la quantité );—_%1;, et qu’on fasse, ce qui est toujours

permis, y = L tang. @, elle deviendra
gsing cosp sing g
e g

or la plus grande valeur de sin 2 ¢ est P'unité; donc, ete.

Donc, si on dénote par IT une quantité égale ou moindre que
la plus petite des quantités ., /, etc. la quantité -;T sera néces-

sairement plus grande que la somme des quantités imaginaires dont
nous parlons.
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Donc, en général ; la quantité £ i- +% sera plus grande
‘ =

—

que la somme de toutes les quantitds

Donc, si ’'on a

pr—1 g I :
Fam e e T 0 ek

A et I1 étant prises positivement, on sera sir que la racine ¢
tombera entre les limites proposées.

Or, pour avoir les nombres A et IT, lorsqu’on ne connait pas
d’avance les racines de ’équation proposée , il n’y aura qu’a cher-
cher dans I’équation des différences (D) du n° 8, la limite / des
racines positives, et la limite — A des racines négatives, et on

1
pourra prendre pour A un nombre quelconque =-ou < Vi et

2 . .
pour IT un nombre quelconque =ou <C v cela snit évidemment
de ce que nous avons démontré dans ’endroit cité,

85. Si l'on avait %-E—i -+ % < %, alors la condition requise au-
rait lieu dés le commencement de la série; de sorte qu’on pourrait
approcher de la valeur de x sans ancun titonnement; voici le
procédé du calcul.

Ayant trouvé la premicre valeur entitére approchée de x, qu’on
pourra prendre ou plus petite oun ‘plus grande que x a volonté;
et nommant cette valeur p, on aura les deux premiéres fractions
1 P .

0’1

On fera donc, 1. =1, @' =0, p=p, p' = 1, et substi~

tnant ces valeurs dans l'expression de R (n° 82), on prendra
. ¥ — R — 2 X

le nombre entier qui approchera le plus de T"—'-, c’est-a-

dire de — R, lequel étant nommé %, on aura la fraction
ke = & hp+41
ks T K
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2% On fera®# =p, 7’ =1, p=kp 41, ¢ =k, et subsii-

tuant dans R, on prendra le nombre entier qui approchera le
R_T !

4
—

plus de E'e’ » c’est-a-dire de 7— » €t ce nombre étant nommé i

. Ket+a  K(kp41)4p

on aura la fraction Werw = pro s,
. Onferanm =/kp 41,7 =K, p — K (kp 4=1) 4+ p,
==Kk -+ 1, et on prendra la valeur entiére la plus approchée

—R—a —R — ¥ : . T
de 7 on —p s laquelle étant nommée A*, on aura
K'e + = oy >
e etc. et ainsi de suite.

De cette manitre, la valeur de  sera exprimée par la fraction
continue

la fraction

1
Pty 11(+ S
k' 4 ete.

ou par les fractions convergentes

1 p k41 K(hkp+1)+p ¢
o2 i k41 IR

86. Si l'on n’a pas d’abord :: an %— < 3, il 0’y avra qu’a
chercher la fraction continue par la méthode ordinaire jusqu’a
ce que l'on arrive & une fraction dont le dénominateur F’ soit
tel que l'on ait i'fﬂil -+ g,:n < %, ou bien jusqu’a ce que 1’on
parvienne i une transformée qui soit dans le cas du n° 83,

Au reste , comme en augmentant toutes les racines d’une équa-
tion dans une raison quelconque, on augmente aussi dans la méme
raison les différences entre ces racines, il est clair que si, dans

I’équation proposée, on met -;; a la place de x, ce qui en aug-

mentera les racines en raison de 1 : f> les nombres A et IT qui
conviendront a la nouvelle équation , en seront augmentés dans
la méme raison, et par conséquent deviendrent fA et J11; done
on pourra faire ensorte que la condition du n® 85 soit vérifide i
en donnant & f une valeur telle que

v
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Alors on pourra toujours se servir de la méthode du numéro
cité pour approcher sans tatonnement de la valeur cherchée de x;
il faudra seulement diviser ensuite cette valeur par f pour avoir
la véritable racine de I'équation proposée : il est vrai que, de

cette maniére, on n’anra plos cette racine exprimée par une
simple fraction continue; mais on pourra néanmoins en approcher
aussi prés qu'on voudra; ce qui suflit pour I'usage ordinaire,

87. Soit I’équation proposée
e Wm0
ensorte que 1'on demande la racine n'me du nombre A.

Soit, 1°, 7z pair, et = 2m , I’équation aura, comme l’on sait,
deux racines réelles 4 \/ﬂA et — \H/A ; et # — 2racines ima-
ginaires qui s’exprimeront ainsi

(cosi—:ﬁ sin% vV — 1)(/A,"

¢ étant la circonférence ou l'angle de 360°, et s élant successi-
vement = 1, 2, 3, etc. jusqu’a m — 1; donc on aura dans
cecas (n°84) w=12,v=m— 1, et on pourra prendre

o Sk LB L . Fagiall o
— 2 — - use que sin - est le 3
A VA, I=sin - X y/A, & cause q = plus

petit de tous les sin %-fw, donc la condition du n° 85 aura lieu si

1 m—1
- + T = on < &
2 A —1 sinExVA

donc elle aura lieu surement toutes les fois que l'on aura
o) n

. Bhe” 3*
sin ——

A =ou >

Soit , 2°. » impair et = 2m ~ 1, P'équation n’aunra qu’'une

n
seule racine réelle /A , et elle aura 2m imaginaires de la forme

(COS sC e & sc = A
— e ST — gt X
— —/ ) W A,
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en faisart successivement s==1, 2, etc. jusqu'a m ; donc on,

aura dans ce cas, m=1, r==m, et comme le plus petit
o

s osE A R ot
des sin = est, & cause de 7 = 2m - 1, sin —.— » on pourra

o =1 802 I i
prendre IT = sin —1-;?— % /A ; de sorte que la condition du nu-

- . = . - m
méro cité aura lien ici, si i = ou < i, c'est-a«

sin ijfL > i;}l

180°

c . n=—1 \"
dire, sil’'ona A = ou > __.__._). Donc, lorsque le nombre
sin

A ne sera pas au-dessous des limites que nous venons de frouver,
on pourra toujours, en faisant usage de la méthode du n° 85,
trouver directement et sans tAtonnement la racine r*™e de ce nom-
bre; et s'il est plus petit que ces limites, on pourra toujours le
rendre plus grand en le multipliant par un nombre quelconque
qui soit une puissance exacte du méme exposant 7 ; ensorte qu’a-
prés avoir trouvé la racine de ce nombre compos¢, il n’y aura
plus qua la diviser par celle de son multiplicateur pour avoir la
racine cherchée de A.

Quant 4 la valeur de R (n° 83), elle sera pour I'équation

nEl‘l-—l

g_rs e As_"n'

»r—A=—o0, R=

88. Puisque le cas de n=2 peut se résoudre par la méthode
de V’art. II ci-dessus , nous en ferons abstraction ici; soit donc

g0
1°. 7 = 4, on aura sin 1; donc A = ou > 4%

2°. n = 6, on aura sin = ‘—/bé; donc A = on > 5°.4%

S
Ve
“a

D : :
%, n = 8, on aura sin done A = ou > 2*.4°,

et ainsi de suite.

De méme, si on fait

. 360° s T
1%, 2 = 3, on aura sm—%—-::%;doncA:ou}ggg-

SCD Lyon 1
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o

. 3bo 5
2% n = 5, on aura sin —t—; et faisant le calcul par les

logarithmes , on trouvera A = ou > 1315, et ainsi de suite.
89. Supposons , par exemple, qu'on demande la racine cubique

de 17 ; puisque 17 est > ”f/S » @ cause de 3 V3> 4, on pourra
employer d’abord la méthode du n* 85. On aura donc ici, 3 cause

den=35etA=17 (n"87), R'= —3—_5%7—3 Or le nombre
entier le plus proche de V17 , est 2 ou 3; de sorte qu’on pourra
faire & volonté p =2, ou p=>35.
Faisons p == 2, et les premitres fractions seront Z, 2; donc
3.4
8 — 17

: . : — R —
et le nombre entier qui approche le plus de — ———?—— = 3% sera 1;

X . K
donc &' = 1, ce qui donne la fraction P‘;‘ =3

3. o=l e W e=50; pe=2., pl=1, dopec R = = —,

¥

g ety g gl e 3y done R =—.2-2 ‘af,
R— 7
~——— = 1Z; le nombre entier qui approche le plus de 1Z &tant 2,

:

. ” o d

on fera X = 2, ce qui donnera la fraction A,P, __{;——,
$ a

. w=2, 7 =1, p=28, ¢ = 3; donc
38

!
R:.—.'—_-——x_g_i Ct _R_T_ir__..... 24 %

8 —17.,3 T 532 ¢ e T T T

le nombre entier qui approchera le plus de cette fraction sera — 25

— 13
L SeTE. y EIC,

donc A" ='=— 2, et la fraction e z

+
E I+'7:

. $
De cette maniére, on aura les fractions convergentes vers /17

1 2 8
S XT3 ooty eles

ct la fraction continue sera

— ]

2—'—-"—:{-:

+—.ra-|--efc°




NOTES

SUR

LA THEORIE DES EQUATIONS ALGEBRIQUES.

NOTE PREMIERE.

Sur la démonstration du Théoréme 1.

IJES deux théoremes du chapitre Ier sont la base de toute la
théorie des équations, et doivent étre démontrés d’une maniére
rigoureuse, et sans rien emprunter de cette méme théorie. La
démonstration que j’ai donnée du premier théoréme (n° 1), est
tirée de la considération des facteurs de ’équation , et pourrait
laisser des doutes relativement aux facteurs imaginaires. Il est
vrai qu'en supposant connu le théoréme sur la forme des racines
imaginaires, on est stir que le produit de deux facteurs imagi-
naires correspondans, est toujours une quantité essentiellement
positive , quelque valeur qu’'on donne a z; d’ou il suit que la
différence des signes dans les résultats des substitutions de petg
3 la place de =, ne peut venir que des racines réelles. Mais on
doit observer que la démonstration rigoureuse de ce théoréme dé-
pend elle-méme du théoreme qu’il s’agit de démontrer; de sorte
gn’on ne peut I’employer dans la démonstration de celui-ci. Pour
éviter toute difficulté, j’ai cherché 4 démontrer ce théoréme par
la nature méme de I’équation , indépendamment d’aucune de ses
propriétés.

Représentons en général P’équation proposée par P — Q = o,
P ¢tant la somme de tous les termes qui ont le signe plus,
et — Q la somme de tous ceux qui ont le signe moins. Supposons
d’abord que les deux nombres p et ¢ soient positifs, et que ¢ soit
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plus grand que p; si en faisant x =p on a P — Q < 0, et en
faisant x = ¢ on a P — Q > o, il est clair que dans le premier
cas P sera < Q, et que dans le second P sera > Q. Or, par la
forme des quantités P et Q, qui ne contiennent que des termes
positifs et des puissances entitres et positives, il est évident que
ces quantités augmentent nécessairement & mesure que x aug-
mente , et qu'en faisant augmenter @ par tous les degrés insen-
sibles , depuis p jusqu’a ¢ ; elles augmenteront aussi par des degrés
insensibles , mais de maniére que P augmentera plus que Q, puisque
de plus petite qu’elle était , elle devientlaplus grande. Doncil y aura
nécessairement un terme entre les deux valeurs p et ¢, ou P égalera
Q , comme deux mobiles qu'on suppose parcourir une méme ligne
dans le méme sens, et qui, partant 4-la-fois de deux points
différens, arrivent en méme temps a deux autres points, mais de
maniére que celui qui était d’abord en arriere se trouve ensuite
plus avancé que l'autre , doivent nécessairement se rencontrer dans
leur chemin, Cette valeur de x, qui rendra P-égal & Q , sera
donc uie des racines de I’équation , et tombera entre les valeurs
p et g. De méme, si en faisant = p on avait P—Q > o, et
en faisant x =g on avait P — Q < o, on aurait dans le premier
cas Q < P, et dans le second Q > P; et en faisant augmenter x
depuis p jusqu’a ¢, la quantité Q augmentera plus que la quan-
tité P, et I’égalera dans un point entre p et g.

Si les deux nombres p et ¢ étaient négatifs ou un des deux
sculement , alors prenant un nombre positif 7, tel que r 4~ p et
r -}- g soient des nombres positifs, il n’y aurait qu’a transformer
I"équation par la substitution de y — r a la place de z; on aurait
ainsi une tranformée en y, danslaquelle les substitutions de » 4-p
et de 7 -}~ ¢ & la place de 'inconnue y, donneraient par I’hypo-
these des résultats des signes contraires, puisque ces résultats sont
les mémes que ceux qui viendraient des substitutions de p et de ¢
a la place de = dans la proposée. Or les nombres r--p et 7 < ¢
étant supposés positifs, on pourra reprendre le raisonnement préeé-
dent, et on prouvera que V'dquation en y aura nécessairement
une racine comprise entre les nombres r <~ p et r~-¢g; par con-
séquent, & cause de & = y ~~r, P'équation en & aura aussi
une racine enfre p et g,




NOTE IL

Sur la démonstration du Théoréme II.

LA démonstration de ce théoréme (n* 5) suppose ces deux pro-
positions , que toute équation peut se décomposer cn autant de
facteurs simples réels qu'elle a de racines réelles, et que le facteur
restant, si le nombre de ces racines est moindre que l’exposant
du degré de I’équation, est tel qu’il ne peut jamais devenir né-
gatif, quelque valeur qu'on donne A I'inconnue. La premiére pro-
position a été long-temps admise par les analystes, comme un
résultat de la formation des équations; et d’.A4lembert est, je crois ,
le premier qui ait fait sentir la nécessité de la démontrer rigou-
reunsement. A 1'égard de la seconde, on pourrait la regarder
comme une conséquence de la premiére; mais pour ne rien laisser
4 desirer sur la rigueur , il est bon de la démontrer aussi en
particulier.

Représentons en général par (2™...) un polynome quelconque
en z du degré m, tel que

A" Ax’“'.-.'.l -{— me:’ — C‘Lm-—_i + etc, ﬁ V;

si on change x en @, il deviendra (e™...), et il est facile de
voir que la différence (2"...) — (a™...) de ces deux polynomes
semblables , sera divisible par x — a ; car chaque terme du poly-
nome (z™...), comme Nz*, donnera dans la diflérence les
termes N (z* — a*); or on a en général , tant que 7 est un nombre
entier positif,

a—a'=(x—a) (2"~ ax"=* 4 a’x" "3 - efc. - a" ") ;

donc , réunissant tous les quotiens, et les ordonnant suivant les
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puissances de x, on aura
(E e (at...) = (2 a) (x"‘.-'...),

(2m—'...) étant unpolynome en a du degré inférieur m-——1.
Ainsi on aura, quelle que soit la quantité e,

(z". ) e=ife g farnl il )s

De la méme manidre, en prenant une autre quantité quelconque 2,
on pourra 1'éc{ulre le polynome (2"—*...) & cette forme,

(am=r s (o= b)) CanEr )~ (O i)y
(z"—*...) étant un autre polynome du degré inférieur m — 2,
et ainsi de suite.

Maintenant je remarque que si I'on a I'équation (27...) =0,
et que a soit une des racines de cette équation , c’est- a-dire une
valeur de x qui y satisfasse , on aura aussi (@”...) = 0; donc
le polynome (&”...) sera alors réductible & la forme

(z—a)(xz ...}

et par conséquent divisible exactement par x — a.

Si, outre la quantité @, il y a une autre quantité b qui satis-
fasse & la méme équation (z™...) = o, il faudra que cette quan-
tité, étant prise pour x , fasse évanouir 'autre facteur (2"~*...),
et soit par conséquent telle que l'on ait (&"~*...) == 0. Donc le
polynome (a™="*...) sera réductible a la forme (x— 2) (z"="...);
et par conséquent on aura

(a",..)=(x—a) (x—0b) (xz"=*...);
de sorte que le premier polynome (z"...) sera exactement divi-
sible par @ — a et par x — b, et ainsi de suite.

Si donc I’équation (2”...)==0 n’a qu'un nombre 7 moindre
que m de racines réelles ¢, b, ¢, etc. on aura d’abord

(z"...) = (x—a) (z—D) (x—¢c)....(a"="...),

etle polynome (2"~"...) ne sera plus résoluble en factenrs
simples réels. Donc, quelque valeur quon donne & x, ce poly-
nome ne pourra jamais avoir une valeur négative ; car §'il y avait
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une valeur de z qui pilt le rendre négatif, comme d’un autre
cbté on peut toujours prendre x assez grand pour que le premier
terme surpasse la somme de tous les autres, il s’ensuivrait qu’il
y aurait deux valeurs qui, étant substituées pour x, donneraient
des résultats de signe différent, et que par conséquent, par le
théoréme I, il y aurait une valeur intermédiaire & qui pourrait
rendre (a2™="...) = o, et qui serait ainsi une racine réelle de
cette équation; donc on aurait alors

Camor.as) ssfa—h) (ansraina),

et le polynome (2™...) aurait encore le facteur réel x—7%, ce
qui est contre I’hypothése Ce polynome (x™—") sera donc néces-
sairement d’un degré pair, et son dernier terme sera toujours po-
sitif (n° 3 ); et le polynome (z"...) aura par conséquent son
dernier terme positif ou négatif, suivant que le nombre des
racines positives @, &, etc. sera pair ou impair.

Non - seulement le polynome (a™—"...) aura toujours une
valeur positive lorsque 1’équation (z™~"...) = o n’a aucune
racine réelle , mais encore quand elle aura des racines réelles
doubles ou quadruples, et en général multiples , suivant un nombre
pair; car alors le. polynome aura des facteurs de la forme (x— g)*,
ar étant un nombre pair; et il est visible que cette quantité est
toujours positive, quelque valeur réelle qu'on donne & z. D’ou
il ’ensuit que le théoréme II a encore lieu pour les racines égales,
triples , quintuples, etc. Mais comme on a des méthodes particu-
lieres pour les racines égales, il suffit de considérer les racines
inégales, et d’avoir une méthode pour les trouver.

Au reste , 'esprit du calcul algébrique , qui est indépendant
des valeurs particuliéres qu'on peut donner aux quantités, fait
qu'on peut regarder tout polynome (z™...) comme formé du pro-
duit d’autant de facteurs simples * — a, x — &, x — ¢, etc. qu'il
y a d’unités dans I'exposant 72 du degré de ce polynome, quelles
que puissent &tre d’ailleurs les quantités ¢, &, ¢, etc. ce qui donne
cette équation identique

Z"— Az" "' 4 Bam?* —ete. £V =(z—a) (z—2) (x—C)....u

laquelle doit toujours avoir lieu indépendamment de la valeur de «,
14
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C’est uniquement dans cette transformation des polynomes que
consiste la théorie des équations. On a trouvé différentes relations
entre les quantités a, b, c, etc. des facteurs, et les coefficiens
A, B, C, etc. du polynome; et ce sont ‘ces relations gui cons-
tituent les propriétés générales des équations (¥ oyez la Note X).

Tes facteurs qu'on suppose aux polynomes qui ne peuvent ja-
mais acquérir une valeur négative , sont appelés imaginaires , et
les quantités @, &, c, etc. de ces facteurs sont les racines ima-
ginaires des équations formées en égalant ces polynomes a z€ro;
d’olt I’on voit que le nombre de ces racines est toujours nécessaire-
ment pair, et que leur produit, qui se trouve ‘égal au dernier
terme du polynome , est toujours positif.




NOTE IIL

Sur Péquation que donnent les différences enire les racines
¥
dune équation donnée, prises deux a deux.

LA recherche de cette équation, qui est ’objet du probleme
du n° 8, deviendrait trés-pénible si on y employait la voie de
I’élimination qui se présente naturellement; mais par les formules
que j'y donne, elle n’a d’autre difficulté que la longueur du calcul.
Tout se réduit a calculer un certain nombre de termes de trois
séries, dont la loi est assez simple.

1. La premiére série, celle des quantités A,, A,, A;, etc. n’est
autre chose que la série conniie pour avoir les sommes des puis-
sances des racines par les coefliciens de 1'équation donnée, et on
en verra la démonstration dans la Note VI. La troisitme série,
celle des quantités @, b, c, etc. qui forment les coefliciens de
I’équation cherchée, est 'inverse de la précédente; elle donne
ces coefficiens par le moyen des sommes des puissances des ra-
cines qu'on a par la seconde série a,, 2,, @;, etc. Je n’avais trouvé
que par induction la loi des termes de celle-ci; mais on peut la
démontrer d’'une maniere générale.

Pour cela, il n’y a qu’d considérer la quantité
(2 =—a) = (& — B)Y + (x— ) - etc.

qui , étant développée suivant les puissances de x , devient

ma'—sA,x' ! -—{—S-ES—:—QA,a:‘T’—igf:-a%f-:@ A% 4= etc.

Comme ces deux expressions sont identiques, on y peut faire
tout ce gu’on voudra. Qu'on suppose donc successivement x =2,
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B, %, etc. et qu'on ajoute ensemble les résultats de ces substi-
tutions, on aura

(o —p)y + (a—3)+cetc. - (B—a)y-4 (B —y) -+ etc.
+ (y—a)y 4+ (y—B)y + etc.

=mA, — sA A, -, c—(‘g—_l) BLA_%

—5(5“12).5(3—2) AS.A;'.._s + elcs

ce qui est évident, puisque , par la notation qu’on a employée,
on a,en général ,A, = o' 4 ' 4 3° 4 etc.

Lorsque s est un nombre impair, il est facile de voir que le
premier membre de cette équation devient nul par la destroction
mutuelle de tous les termes; et le second membre devient nul aussi
de lui-méme , en remarquant que I'on doit avoir A, =a° - f°
= 9° = etc. = m, nombre des racines.

Mais lorsque s est un nombre quelconque pair = 2x; le pre-
mier membre devient égal 4 22, , suivant la notation des termes
de la seconde série ; ainsi on aura

20 = MmAy, — 2pA, A, - —g—i—i(%_:—l-) A Ayu—a

__254(2#—21‘)3(2#—2)A3A2#_3 4 etc.

Comme les termes de cette série se trouvent les mémes de part
et d’autre du terme du milieu, qui contient A, A, en réunissant
les termes égaux, et divisant par 2z, on aura la formule géné-
rale de la valeur de . que j’ai donnée dans ’endroit cité.

2. On pourrait , de la méme maniére , trouver des formules pour
les sommes des racines prises deux a deux. Car en considérant
la quantité

(xta) 4 (24 B)Y + (&~ ) ~+ etc.

on aura par le développement cette expression identique

ma 4 sA 2 EE T A g SO D) e et
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Donec, faisant successivement x = «, 3, 7 , etc. et ajoutant en-
semble les résultats, on aura

2 (o 4 B 4+ 9 } etc.)
+a(atBY + 2(at2) + 2(B+7) + o
=mA, + sA A _, + 5—(5—2——1—)A3A;_2

L ot & & —
e gR et
Donc, si on dénote en général par a,, la somme des puissances
stmes des racines ajoutées deux 4 deux, on aura, 4 cause de

o' = 2 4 5° - etc. = A, celte expression de 24,

28,5 (mimia Yk, o o Al o SO g

-} 5(5_12)'5(3_9‘) A; A, —; 4 etc.

Comme s est supposé un nombre entier, il est clair que les
termes également éloignés des deux extrémes seront égaux: or le
dernier terme sera A, A,, mais A, =— m; donc, réunissant le
dernier au premier , l’avant-dernier au second, et ainsi de suite,
et divisant par 2, on aura, lorsque s est un nombre impair,

e B s(s—1)
(ZJ:(?H—'E — )As—*—s-A-l As—:+"""";'_ .AQA,_,'-’-E(C.

s(s—1) (s----ﬂ.)...(iiﬂ—5

= T

1 . . T

2
et lorsque s est un nombre pair,

a=(m—22"")YA, +sA A=, + %—12 A, A;z, - etc.

o emn () (%)

5 P
15 B o e =
a

—

Si on détermine par cette formule les termes de la série «,,
a., as, etc, et qu'on emploie ces valeurs dans les expressions des
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des quantités @, b, ¢, etc. de la troisitme série, on aura les
coefficiens de I’équation , dont les racines seront les 7 sommes
a3, a=-%, B9, etc. des racines de 1’équation donnée ,
prises deux a deux. Cette ¢quation peut étre utile dans plusieurs
occasions.

3. Je dois, au reste, observer ici que FF aring avait d¢ja remar-
qué dans ses Miscellanea analytica, imprimés en 1762, l'usage
de I’équation, dont les racines seraient

1 1 1
e e T

e,

pour trouver les limites des racines réelles de I'équation , dont
les racines sont &, 8, 7, etc. Mais je ne connaissais pas cet
Ouvrage lorsque je composai mon premier Mémoire sur la réso-
lution des équations numériques; d’aillenrs cette remarque n’étant
présentée dans 'Ouvrage de F#aring que d’une maniere isolée,
serait pent-&tre restée long-temps stérile sans les recherches dont
elle etait accompagnée dans ce Mémoire.

Je dois ajouter que le méme Auteur a aussi remarqué avant moi
les caracteres qu’on peut tirer des signes de I’équation , dont les
racines sont les carrés des différences entre les racines d’mne équa-
tion donnée, pour juger des racines imaginaires de cette équation.
11 avait dit simplement dans I'Ouvrage cité, que si cette équation
des différences n’a que des signes alternatifs, I’équation primitive
a nécessairement toutes ses racines réelles; autrement elle en a
d’imaginaires; mais il a donné ensuite sans démonstration , dans
les Transactions philosophiques de 'année 1765, les conditions
qui résultent des équations des différences du quatriéme et du
cinquitéme degré, pour que les équations de ces degrés aient ou
toutes leurs racines réelles , ou deux ou quatre racines imaginaires;
ce que personne n’avait encore fait pour le cinquieme degré.

Dans le second Mémoire, je m’étais contenté de donner les
équations des différences pour le second , le troisitme et le qua-
trieme degré; la longueur du calcul m’avait empéché de donner
celle du cinquieéme degré; mais comme elle peut étre utile dans
quelques occasions , je vais la rapporter ici, d’apres /¥ uring.,




NOTE 1II1.

4. Soit donc I'équation du cinquitme degré

x° 4+ Ba? — Czx* 4= Dx — E = o0,

I’équation des différences sera

910 e @9 e D e 7 e A1 e 1 A fiA e g 0 e P i - k=0
dans laquelle

a= —10B

b= 5gB*~- 10D

¢ = — 80B° — 50BD — 25C*

d= g5B* 4 124B*D — ¢5D* 4 92 BC* 4~ 1200 CE

€ = — 66B° 4 360 BD* — 169B’D — 118 B*C* — 260 C*D
— 625 FE* — 400 BCE

J=—25B°4 40D? — 55 Ct - 52 B*C* — 522 B*D* 4 194 B‘D
~+ 708 BC*D ~ 240 B*CE + 1750 BE* — 950 CDE

g==— 4B — 106 B°D - 80BD?® -+ 308 B*D* <~ 102 BC*
~ 7 B¢C* — 570 C*D* — 612B*C*D — 700 C°E - 3750 DE*
— 2500 B*E* — 80B*CE 4 2150 BCDE.,

h = 400Dt — 360 B*D?® — 15B'D* 4 24B*D — 8B°C*
— 45B*Ct — 270 C*D + 140 B*C*D 4~ g6o B C*Ds
~ 1875 C*E* - 1000 CD*E — 5000 BDE* + 1750 B’E*
~ 40 BCE =}~ 600 BC’E — 1650 B*CDE.

i =—36B°D* 4- 224 B*D? — 320BD* — 4B*Ct — 27CF
4o C D’ — 434B°C:D* - 24B*C*D + 198BC‘D
— 5000 D* E* 4 450 CCDE ~ 6250 CE® — 675 B*E*
- 3750 B*DE* — 3000 BC*E* — 60B*C°E — 200 BCD’E
-}- 330 B* CDE.

k= 3125Ef — 3750 BCE? -~ (2000 BD* + 2250 C*D
— goo B*D - 825B*C* - 108B° ) E* — (1600 CD?®
— 560B*CD* — 16B*C? =4~ 630BC’D ~ 72B¢CD
— 108 C%)E = 256 D3 — 128 B*D* +4- 144 BC*D? + 16B‘D*
— 27 CD* — 4BCD".
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La réalité de toutes les racines de I’équation du cinquicme
degré exige donc que la valeur de chacune des quantités a , b,
¢, efc. soit positive; ce qui donne, comme I'on voit , dix condi-
tions : mais il est possible que quelques-unes de ces conditions
se {rouvent renfermées dans le systtme des autres; ce qui en di-
minneroit le nombre , comme nous l’avons vu pour le quatrieme
degré. Si toutes ces conditions n’ont pas lieu a-la-fois, alors I’équa-
tion aura nécessairement deux ou quatre racines imaginaires , sui-
vant que la quantité % aura une valeur négative ou positive.
Mais si cette quantité était nulle, ’équation aurait deux racines
égales; elle en aurait trois égales, si la quantité était nulle en
méme temps, et ainsi du reste.

s il i i ol T,




NOTE IV.

Sur la maniére de {rouver une limite plus petite que la

Pplus petite différence entre les racines dune équation
donnée.

LA détermination de cette limite est nécessaire pour pouvoir
former une suite de nombres, dont la substitution successive fasse
connaitre d’une manitre certaine toutes les racines réelles de
P’équation proposée (n° 6). Le moyen le plus direct d’y parvenir,
est de calculer, comme nous 1’avons proposé, I’équation méme
dont les racines seraient les différences entre celles de I’équation
donnée, et de déterminer ensuite , par les méthodes connues , la
limite de la plus petite racine de cette équation. Mais, pour peu
que le degré de I’équation proposée soit élevé, celui de I’équation
des différences monte si haut , qu'on est effrayé de la longueur du
calcul nécessaire pour trouver la valeur de tous les termes de cette

équation , puisque le degré de la proposée étant 7, on a B )

coefficiens A calculer , et que, pour employer les séries du n° 8y
il faudrait en tout calculer 2m(m — 1) termes.

Comme cet inconvénient pourrait rendre la méthode générale
presque impraticable dans les degrés un peu élevés, je me suis
long-temps occupé des moyens de I’affranchir de la recherche de
Iéquation des différences ; et j'ai reconnu, en effet, que sans
calculer en entier cette équation, on pouvait néanmoins trouver
une limite moindre que la plus petite de ses racines; ce qui est
le but principal du calcul de cette méme équation.

1, En effet, soit 'équation proposée en x

B ad LA s - Bxmr—2* — Cxr=3 -} etc. = o
. : =
12
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que je représenterai, pour plus de simplicité par X = o; qu'on
en déduise cette équation en z du degré m — 1 (n°8)
Y +Zu+ Vu - etes - u"""=o0,
dans laquelle
Y=ma='—(m—1) Aa"~* 4 (m—2)Ba"z® — etc.

Es 7_71(1?12-——1) ek e ')g(m'—“"lem:% + etc.

s m(m—1) (m—2)

- 3 ‘Im-—-—S o i e{—c'

= ‘K" X-‘ﬂ
savDir, . ¥ == A s Z:“?, V = 5, etc

X', X", X", etc. étant les fonctions dérivées de X, ou les coeffi-
"X d*’X
o

ciens différentiels %’i—{ s

On a vu dans le probléeme du n° 8, que si on substitue dans
cette équation en %, & la place de x , une quelconque des racines
de ’équation =0, elle aura alors pour racines les différences
entre cette racine et toutes les autres racines de la méme équa-
tion. Donc si on y substitue successivement les 7 racines de
I’équation X =0, on aura m équations en x , dont les racines
seront toutes les différences possibles entre les racines de I'équa-
tion proposée; par conséquent, il ne s'agira que de trouver une

quantité plus petite que la plus petite racine de chacune de ces
m équations.

. . 1 . .
Done, si on fait z = >, ce qui changera ’équation en u en
celle-ci

Z 1
Y o=+ 5 et - s =0,

ou bien en multipliant par 7"=", et divisant par Y ;

- Z . Vs
z’":'—]—?z"if“—}-ﬁz"‘—a -} ete. —|—%~ = 0

tout se réduira a trouver une limite plus grande que la plus grande
des racines de cette derni¢re équation , en supposant qu'on y sub-
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stitue successivement pour x chacune des m racines de I’équation
proposée ; car cette limite étant trouvée, si on la nomme L, il

est visible que -Ll— sera la limite cherchée plus petite que chacune

des m racines.

2. Oron sait (n° 12) que le plus grand coeflicient des termes né-
gatifs d’upe équation , pris positivement et augmenté d’une unité,
est plus grand que la plus grande de ses racines positives. Ainsi,
pour avoir la limite L, il n’y aurait qu’a trouver la plus grande
valeur négative qui pourrait résulter de la substitution des racines

Z V
de I'équation # = o a la place de = dansles coefficiens i, ¢, ete.

de I’équation en 7, ou une quantité plus grande que cette valeur.

Si ces coefliciens ne contenaient que des puissances de x sans
dénominateur , on pourrait résoudre la question en substituant
a la place de x dans les termes positifs, une limite plus petite
que la plus petite des valeurs positives de x , et dans les termes
négatifs, une limite plus grande que la plus grande de ces valeurs;
car il est visible qu'on aurait, par ce moyen, des quantités né-
gatives plus grandes que les valeurs négatives que chaque coef-
ficient pourrait recevoir par la substitution de chacune des racines
positives de la proposée en x; et pour avoir égard aux racines
négatives de la méme équation, il n’y aurait qu’a changer dans
les expressions des mémes coefliciens * en — x, et substituer en-
snite dans les termes positifs une valeur de x plus petite que la
plus petite racine négative de cette équation, prise positivement,
et dans les termes négatifs une valeur de z plus grande que la
plus grande de ces racines.

La plus grande des quantités negatwes trouvées de cette ma-
nitre , prise positivement et augmentée de I'unité, pourrait sans
scrupule étre employée pour la limite cherchée L,

Toute la difficulté vient donc du dénominateur Y, qui contient
aussi I'inconnue z. J’avais proposé autrefois de prendre pour Y
une valeur plus petite que chacune de celles qui pourraient ré-
sulter de la substitution des racines de I'équation X = o 4 la place
de x; mais la difficulté était d’avoir cette limite ; et il ne parait
pas possible de la trouver autrement que par I’équation méme ,
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dont les différentes valeurs de Y seraient racines. Pour avoir celte
€quation, on ferait Y = y, et on éliminerait  au moyen de
I’équation X = o, et de celle-ci y — Y == 03 I'’équation résultante
en y serait du mme degré, et la limite plus petite que la plus
petite de ses racines serait la quantité qu’on pourrait prendre
pour Y ; mais cette équation en y peut encore étre fort longue
a calculer, soit qu’on la déduise de I"élimination, soit qu’on veunille
la chercher directement par la nature méme de ses racines.

3. Jai fait réflexion depuis , qu’on pouvait toujours éliminer I’in-
connue x du polynome Y, en le multipliant par un polynome conve-
nable du méme degré m — 1, et en faisant disparaitre, au moyen
de I’équation X = o, toutes les puissances de z plus hautes
queta® 7

En effet, si on prend un polynome tel que
ZFShetaateN o haP e e am it < et

que nous nommerons £ pour abréger, et dans lequel les coeffi-
ciens a, &, ¢, etc. soient arbitraires, et qu'on multiplie le po-
lynome Y par celui-ci, on aura un polynome du degré 2m — 2.
Or Iéquation X = o donne d’abord la valeur de 2™, et avec cette
valeur on pourra former, en multipliant successivement par x,
et substituant & mesure la valeur de 2™, toutes les puissances de x
supérieures & 2™~ jusqu’'a x*™—*. On substituera donc ces valeurs
dans le polynome Y £, et il s’abaissera a la puissance m — 1
on fera alors disparaitre tous les termes qui contiennent x, en éga-
Yant a zéro chacun de leurs coefficiens ; ce qui donnera m — 1,
€quations linairesen e, 2, ¢, elc. lesquelles serviront & déterminer
ces inconnues, dont le nombre est aussi 7 — 1; nommant K le

terme ou les termes restans et tout connus, on aura Y =K,

K
et par conséquent Y = 7

L’équation en : deviendra , par cette substitution ,

A —1 Z M — VE'—
e -I-«ng r”—[——fzm.ﬂ-{—-etc.—l—%:o;

‘ 4 e TRED :
et comme les coefliciens & » K ete. ne contiennent plus
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des puissance$ de @ sans dénominateur , on pourra y appliquer

la méthode proposée ci-dessus, et trouver une limite L plus grande
que la plus grande des valeurs de Z.

On pourra réduire aussi les polynomes ZZ , V£, ete. & ne con-
tenir que des puissances de = moindres que 2™~* par les mémes
substitutions des valeurs de 2™ et des puissauces supérienres a 2™,
Cette réduction n’est pas absolument nécessaire , et on peut sans
inconvénient employer les polynomes tels qu’ils résultent de la
multiplication de Z, V , ete. par £ ; mais elle est utile pour sim-
plifier le calcul et avoir une limite L plus approchée.

4. Il est bon de remarquer encore que , comme les valeurs de z
qui représentent les différences entre les racines de I'équation
proposée , peuvent élre également positives et négatives, les va-

. . . . 1
leurs de 7 pourront I’étre aussi, pnisque nous avons fait z = =
L
d’ou il s’ensuit que la limite des valeurs positives de 7 le sera
aussi des valeurs négatives prises positivement , et réciproquement
celle des plus grandes valeurs négatives prises positivement, le
deviendra des plus grandes positives.

On pourra donc dans I'équation en /7 prendre également 7 positif
ou négatif, et par conséquent prendre le second , le quatrieme ,
le sixieme, etc. termes de I'équation en i avec des signes con-
traires, si, de celte maniere , il en résulte pour L une limite
moindre.

5. Ayant ainsi trouvé la limite L , on aura L—- pour la limite plus
petite que la plus petite différence entre les racines de I’équation
proposée, et on pourra faire A :{: (n° 6) pour avoir la snite

A, 2A, 34 etc. des nombres dont la substitution successive ferg
connaitre surement toutes les racines réelles de la méme équation,
et donnera leurs premiéres limites,

Si la quantité K ¢était nulle, on aurait pour L une quantité

x ¥ o ety el , Ziral s gt eg i
infinie, et la limite T deviendrait zéro; ce qui indiquerait I'égalité

de deux ou plusieurs racines dans I’équation proposée. En effet,
¢'il y a deux racines €gales, il est clair qu’il y aura une des valenrs
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de z qui sera nulle; done le dernier terme Y de I’équation en z;
deviendra nul, en y substituant pour  une des racines de I’équa-
tion X = o; donc cette équation aura lieu en méme temps que

: : T dX .
Péquation Y = 0, c'est-a-dire, X' = o ou —7 = ©0; ce qui re-

vient & ce que l'on sait depuis long-temps. Donc I’équation ré-
sultante de celle-ci par 1’élimination de x , aura lieu aussi. Or il
est facile de voir que cette équation n’est autre chose que ’équa-
tion K = o; car, puisque le produit Y£ devient =K par le

r : K r
moyen de 'équation X =o0, on aura Y — 7 et par conséquent

Véquation Y = o donnera K = o.

Lorsqu’on sera assuré par-la que 1’équation en xa des racines
¢gales, on les tronvera en cherchant le commun diviseur des équa-
tions X =o0 et Y =o (n°® 15); ensuite ’équation en 7 donnée
ci-dessus étant multipliée par K et divisée par Z£ , deviendra, a
cause de K=o,

im.—’+;im*3+etc. -i-%:o,

a laquelle on pourra appliquer la méme méthode pour trouver
une limite plus grande que les valeurs de 7, et ainsi de suite.

Au reste, comme avant d’entreprendre la résolution d’une équa~
tion par quelque méthode que ce soit, il est toujours nécessaire
de s’assurer si elle a des racines égales , parce que ces racines
peuvent se déterminer 4 part d'une maniére rigoureuse , on voit
que le calcul de la quantité K est indispensable lorsqu’on ne cal-
cule pas I’équation des différences ; car ’"équation K = o est pro-
prement celle que I'on trouve par les méthodes ordinaires, lors-
qu’on cherche les conditions de 1’égalité des racines. Ainsi & cet
égard la méthode que nous proposons n’alonge point le calcul
nécessaire pour la résolution des équations.

6. La quantité K étant connue, tout se réduit a chercher une
quantité égale ou plus grande que la plus grande valeur négative

7z z

.. V & . 4 - .
des quantités K > & ete. ]%—, coefliciens de I’équation en Z; pour

cela , on substituera 4 la place de # une quantité plus petite que
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la plus petite des racines positives de l'équation X =o, dans les
termes positifs de ces coefficiens, et une quantité plus grande que
la plus grande de ces racines dans les termes négatifs ; ensuite,
ayant changé dans ces mémes coefficiens o en — =, on substi-
toera de méme dans les termes positifs une quantité plus petite
- que la plus petite des racines négatives, et dans les termes né-
galifs une quantité plus grande que la plus grande des racines
négatives de la méme équation , en prenant ces racines positive-
ment. Le plus grand résultat négatif qu’on aura de cette maniére,

¢tant pris positivement et angmenté de l'unité, donnera la valeur
de la limite L, que l'on cherche.

Pour avoir ces quantités plus grandes et plus petites que les
racines de I'équation X =0, on pourrait prendre tout de suite
le plus grand coeflicient des termes négalifs de cette équation ,
angmenté de I'unité , pour la quantité plus grande que ses racines
positives; ensuite, aprés avoir échangé dans la méme équation

X en xl, et fait disparaitre par la multiplication les puissances

négatives de x, on prendrait de méme le plus grand coefficient
des termes qui seraient de signe différent du premier, et l'unité
divisée par ce coefficient augmenté de 'unité , serait la quantité
plus petite que les mémes racines. A légard des racines néga-

tives , on changerait dans 1'équation x en — x pour les rendre

positives , et om trouverait de la méme manitre les quantités
plus grandes et plus petites que ces racines.

Mais , quoique les limites qu’on trouvera par cette méthode
soient toujours exactes, elles peuvent néanmoins étre trop éloi-
gnces entre elles; ce qui aurait Vinconvénient de donner pour la
limite L. une quantité trop grande , et par conséquent pour la
différence A des termes de la suite une quantité trop petite : d’out
résulterait un trop grand nombre de substitutions successives &
faire dans 1’équation proposée pour en découvrir toutes les ra-
cines (n° 6).

7- 1l est donc utile d’avoir des limites plus resserrées, et on pourra
les trouver par la méthode exposée dans le n° 12. Suivant I’esprit
de cette méthode , il ne s'agira que de chercher d’abord une va-
leur de & qui rende positives les valeurs des fonctions X, X,

-SCD Lyon
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X", etc. ce qui n'est pas difficile en commencant par la dermiére;
ou x n'est qu'a la premitre dimension , et remontant successive-
ment & celles qui précedent. Cette valeur sera la limite plus grande
que toutes les racines positives de l'équation X = o. Pour avoir
ensuite une limite plus petite que ces racines, on transformera

la fonction X, en y substituant i a la place de x, et la multi-

pliant par 2™ pour faire disparaitre les puissances négatives ; et si
le terme ol est 2™, se trouve négatif, on changera tous les signes
pour le rendre positif. On prendra cette nouvelle fonction pour X,
et en ayant déduit les fonctions X', X', etc. on cherchera de
nouveau la valeur de x, qui rendra toutes ces fonctions positives.
L’unité divisée par cette valeur, donnera une limite plus petite
que toutes les racines positives de la méme équation X = o. Enfin
on changera dans ces deux séries les fonctions = en — x, en
changeant en méme temps tous les signes, si la plus haute puis-
sance de x se trouve affectée du signe —; et les valeurs de x qui
les rendront toutes positives seront les limites plus grandes et plus

petites que les racines négatives de la méme équation prises posi-
tivement,

8. Pour donner un exemple de la méthode que nous venons

d’exposer , nous l'appliquerons & 1'équation
' — 7x 4 7 = o,

que nous avons résolue dans le n° 27,

On aura donc ici

X=a —qgx -7,

et les fonctions dérivées seront

X=3x —73 X sm56x,.X =6, XU=o;

donec
i

X X =32 —~17; s i Gl

5, St 1
v 3.3 S

)

st I'équalion en % sera du second degré.
q )
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On prendra pour £ le polynome indéterminé du second degré
x* -~ ax -+ b,
et en le multipliant par le polynome Y, on aura
Y& = 32t 4 3aa® + (56 — 7) a* — 7ax — 7b,
Mais I'équation X=lo donne 2°=7z— 7; donc Zh=7x* — 72
Faisant ces substitutions , on aura
Y& = (35 + 14) @* o+ (14a—21)2 — 21 — 7 5.
On fera donc

30 4+ 14 =0, 142 — 21 = o, — 212 — 75 = K;
d’olr l'on tire
a=3, b=—21, eK=2I

Ainsi, puisque la quantité K n’est pas nulle, on en conclura
d’abord que I'équation n’a pas de racines égales.
Maintenant on aura

3 S
S5t el o B

et de 14, en multipliant par Z =3, et substitnant pour x° sa
valeur ,

Zf:%xj+7x—-21;

de sorte que les deux coefficiens de 1’équation en 7 seront

27 x* 4 fax — 126 62 4 gz — 28
3 el s
7 %
et il ne s’agira plus que de trouver une quantité égale ou plus
grande que la plus grande valeur négative que ces coefficiens
puissent avoir sans connaitre les valeurs de z: or c’est & quoi
on peut parvenir par le moyen des limites de ces valears:

9. Pour cela, on commencera par chercher des limites plus

grandes et plus petites que les valeurs de «, tant positives que né-
16
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gatives, Je remarque d’abord que le plus grand coefficient des
termes négatifs dans I’équation en x, étant 7, on pourrait prendre
8 pour la limite plus grande que les racines positives ; mais
on peut trouver une limite moindre par la considération des
fonctions X, X', X'; savoir,

.

2! — 77, Bx*—17g, 6z,

en cherchant une valeur de z qui les rende toutes positives: on
trouve que x = 2 satisfait & ces conditions; de sorte que 2 sera
une limite plus grande ‘que-les racines positives.

Si on change dans ces mémes fonctions x en — x, en chan-
geant en méme temps les signes, s'il est nécessaire , pour que le
premier terme soit towjours positif , en a celles-ci,

r —nxe—17, 3a*—17, 6x%

et I'on voit que, pour les rendre toutes positives, il faut faire en
nombres entiers x = 4 ; mais en nombres fonctionnaires il suffit
de x =35 % : ainsi #; sera une limite plus grande que les racines
négatives prises positivement.

Oa transformera maintenant la fonction x par la substitution

de % a la place de =3 et I'ayant multipliée par 2* pour faire

disparaitre les puissances négatives , on aura , aprés avoir divisé
par 7, coeflicient du premier terme, cette fonction transformée

'xS g .'.]3" + ;},
dont les'deux fonctions dérivées seront
3x° — 22, 6x — 2,

qu’il faudra rendre positives pour ume valeur supposée de z. Or
-on trouve que 1 satisfait & ces conditions; mais on y peut satis-
faire par un nombre moindre, comme 2. Ainsi £ sera une limite
plus petite que les racines positives.

‘Enfin , en:changeant' dans ces mémes fonctions @ en — z, et
shangeant 'en méme temps tous les signes de la premiére et de la
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troisime pour rendre les premiers termes positifs , on a celles-ci ;
&t o2t — 2, B3a2 =22, 6x - 2;

et I'on trouvera aisément qu’elles deviennent toutes positives en
faisant = I; d’olil s’ensnit que 3 sera une limite moindre que
les racines négalives prises positivement. ’

On a donc pour les limites des racines positives les nombres
3 et 2, et pour celles des racines négatives prises positivement,
les nombres 3 et 2 CRi

v
On substitnera donc d'abord 3 la place de x, £ dang Tes termes
positifs, et 2 dans les termes négatifs des deux quantifés '™’

87x* 4 4ox — 126 6a*+ gx — 28
7 7 Z :
et 'on trouvera les résultats — 3> et — 1¢; comme le premier
de ces deux résultats est le plus grand, il est bon de voir si, en
changeant tous les signes de la premitre quantité, ce qui la ré-
— 97 x* — 4ox + 126

duit & , et substituant de méme % dans les

termes positifs et 2 dans les termes négatifs, au lieu de z, on
aurait un résultat moindre ; mais on trouve celui — 2%, qui est
an contraire plus grand , et par conséquent inutile.

On changera maintenant dans ces mémes quantités x en — ,
ce qui les changera en celles-ci,

27 x* — 4ox — 126 6x*—qgx—28
2 ’

7. 7

et on y substituera 3 & la place de =, dans les termes positifs ;
et 2L dans les termes négatifs, il viendra ces résultats — §% et
— 12 et comme le résultat de la premitre quantité est moindre
que 'un de ceux que nous avons déja trouvés, il est inutile d’en
chercher un autre en changeant les signes de cette quantité.

22

Puisque — 22 est le plus grand résultat négatif , on aura
. . G e £,
L. = 3* -} 1, et par conséquent A = = 5g “ROUE la limite

cherchée , moindre que la plus petite différence entre les racines
de I’équation proposée.

SCD Lyon 1
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. Nous avons trouvé par I'équation méme des différences A = i
(n® 27); d’olt I'on voit que la méthode précédente donne i la
vérité une limite un peu plus petite , mais que la différence est
peu considérable. Au reste, quoique pour une équation du troi-
sitme degré il n’y ait guere rien a gagner par cette méthode sur
la longueur du calcul, il n’en sera pas de méme pour les équa-
tions des degrés supérieurs ; car le nombre ‘des opérations que cette
méthode exige n’augmente que comme le degré de I’équation, au
lieu que celui des opérations nécessaires pour calculer 1'équation
des différences et en déduire la limite cherchée , augmente comme
les carrés de ce méme degré.
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Sur la Méthode & Approximation donnée par Newton.

COMME la méthode de Newton pour la résolution approchée
des équations numériques est la plus connue et la plus usitée ,
a cause de sa simplicité, il est important d’apprécier le degré
d’exactitude dont elle est susceptible; voici comment on y peut
parvenir.

1. Soit Péquation générale du degré m

"™ — Ax™—*' 4 Ba"=* — etc. = o

dont on cherche une racine. La méthode dont il s'agit demande
qu’on connaisse d’avance une valeur approchée de la racine cher-
chée; en désignant cette valenr par @, on fera x = a ~+p, et
on aura par cette substitution une équation transformée en p,
qui, a commencer par les derniers termes, sera de la forme

X o Xp b Zptiad= Vipt ol etel o p*

ou les quantités X, Y, Z, etc. seront des fonctions de a, qu’on
trouvera tout de suite par les formules duo n° 8, en changeant »
en o : ainsi on aura

X =a" — Aag"' 4+ Ba"=* — Ca"—% - etc.
Y — matT " — (7n.—.-. IJAQ‘"ZQ + (ﬂl = 2) Bam—% — etc.
eic:

Comme p doit &tre par I’hypothése une quantité assez petite ,
étant la différence entre la vraie racine et la valeur supposée de
cette racine , les puissances p*, p*, etc. seront de fort petites
quantités auprés de p; par conséquent les termes affectés de ces
puissances , seront eux-mémes nécessairement trés-petits i I'égard
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des premiers termes X -+ Y p, puisque les coefficiens Z, V, efc.
ne peuvent jamais devenir fort grands; étant des fonctions sans
dénominateur : ainsi , en réduisant toute I’équation A& ses deux
termes , on en tirera une valeur approchée de p , qui sera = — i—(
Appelons b cette valeur approchée de p, on pourra faire par la
méme raison, dans 1’équation en p, la substitution de b~-¢, &
la place de p, et négliger ensuite dans la transformée en ¢ les
termes qui contiendront le carré et les puissances plus hautes de ¢;
cette transformée étant ainsi réduite aux deux premiers termes de

la forme (X) =+ (Y)g, donnera sur-le-champ ¢ = — E—g Cette

quantité étant nommée ¢, on substituera ¢ <4 7 & la place de ¢
dans la derniére transformée, et on en aura une nouvelle en r,
d’ot1 V’on tirera de méme la valear de r, et ainsi de suite.

De cette maniére, on aura les approximations ¢, a + &,
a -~ b - ¢, etc. vers la vraie valeur de la racine cherchée.

2. Voild la méthode telle que Newtor I’a donnée dans la
Méthode des Fluxions ; mais il est bon de remarquer qu’on peut se
dispenser de faire continuellement de nouvelles transformées; car,
puisque la transformée en p est le résultat de la substitution de
a =+ p, au lien de x dans I’équation en x, et que la transformée
en g est le résnltat de la substitution de b -~ ¢, an lien de p dans
la tranformée en p, il s’ensuit que cette transformée en ¢ sera
le résultat de la substitution immédiate de @ 4+ b 4 ¢ a la place
de x dans la méme équation en x; par conséquent elle ne sera
autre chose que la premiére transformée en p, en y changeant
pen g,etaena-b; douil sensuit qu'ayant trouvé l'expres-
sion générale de p en a, on aura celle de ¢, en y substituant
a + b au lieu de a; et par la méme raison on aura la valeur de r,
en substituant @ -+ b - ¢ au lieu de @, et ainsi de suite.

Donc en général si, dans I'expression de p en a, on substitue
pour a un terme quelconque de la suite convergente vers la racine
cherchée, on aura la quantité qu’il faudra ajouter a ce terme pour
avoir le terme suivant.

La méthode qui résulte de cette considération est, comme
I'on voit , plus simple que celle de Newion ; c’est celle que
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Raphson adonnée dans 'ouvrage intitulé Analysis tequationum
universalis , imprimé 3 Londres en 1690 , et réimprimé en 1697.
Comme la méthode de Newton avait déja paru dans Pédition
anglaise de ' 4lgébre de ¥Wallis en 1685, et qu'elle a été ensuite
expliquée en détail dans 1'édition latine de 1793 , on peut étre sur-
Pris que Raphson n'en ait pas fait mention dans son ouvrage ;
Ce qui porterait & croire qu’il la regardait comme entiérement
différente de la sienne : c’est pourquoi j’ai cru qu'il n’était pas
inutile de faire remarquer que ces deux méthodes ne sont au fond
que la méme présentée différemment.

5. Maintenant il est clair que la bonté de la méthode dont il
s’agit, dépend de cette condition, que si a est une valeur approchée
d’une des racines de 1’équation proposée , @ --p sera une valeur
plus approchée de la méme racine ; c’est donc ce qu'il faut exa-
miner,

Soient «, B, 3, etc. les m racines de P’équation

" — Aa"—' 4 Bax™—* — etc, = 0;

cette équation, comme on 1’a vu dans la Note sseconde , peut
toujours se mettre sous la forme

(2—a)(x—B)(x—2)uiucen.... B o

Mettons a - p 4 la place de x, et développons les termes sui-
vant les puissances de p ; on trouvera pour les deux premiers termes
X 4-Yp, ces valeursde X et Y,

" s

Yz (g =) Caiesg).in . e (s a g K d—dnn ooV o i
+ (e—a) (a—fB).... 4 etc.
d’olt l'on tire
Y 1 1
XaEe

aQ=—d

1

-+ ~~ etc.

a—f a—7y
el par conséquent

Pe== 1 1

-+

1

T

ypm -+ praes - etc.
1

-+ _1'.“ -+ etec.

a-—-a+ﬂ—a ¥

1 1

e A s

et s

S e T S|
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Supposons que ¢ soit la racine que l'on cherche, ¢t que @ soit
une valeur approchée en plus ou en moins, & — a sera le défaut
ou Pexces de la valeur @ sur la véritable «, et o — a — p sera le
défaut ou lexceés de la valeur corrigée a = p; et il faudra , pour
la bonté de la méthode, que la quantité & — a — p soit toujours plus
petite que la quantité & — a, abstraction faite des signes de ces

ce ko, 4 oy P 1 . .
quantites; et par consequent que la quantité Seng soit toujours

plus grande que abstraction faite des signes.

a—a’
4. Faisons pour abréger
1 1
R_ﬁ_a—[—?_a—{— etc.
on aura par la formule trouvée ci-dessus pour la valeur de p,
1 e
1 s gk

+R SR

= a—da

U m——g—p==—a—

1

+ R
L _d’.—'a il 1 . 1
a—a—p "~ R(z—a) _ar.—a+ (a—a)*R’

D'otr je conclu , que si la valeur de R est du méme signe
que celle de « — @, la valeur de @ — @ — p sera encore du
méme signe , et que la condition dont il sagit aura nécessaire-
ment lieu.

Mais si les deux quantités « — a et R sont de signes con-
traires , alors, pour que la condition ait lieu , abstraction faite

des signes, il faudra que l'on ait (‘*—;—P)’ > (a-ia)a" or de

I'équation précédente on tire

1 1

— 1 2 3
(e—a—p)~ (z—a) 5.0 (z—a)’R o (a—a)*R*?

- a2 1 . a7
donc il fandra que R -+ T soit une quantité pe-
sitive , et par conséquent que l’on ait la condition

2(ae—a)R 41 > 0.
Comme la valeur de R dépend des autres racines 8, 3, elfc.
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qui sont inconnues ; il est difficile, peut-&tre méme impossible
de trouver & priori un caractére pour juger si la condition dont
il s’agit est remplie ou non.

1l est aisé d’ailleurs de former & posteriori des équations on
cette condition n’aura point lieu, en prenant les racines B, v, etc.
de manitre que quelques-unes des différences 8 —a, y—a, etc.
soient fort petites et de signes différens; et si B et 9, par exemple,
sont imaginaires et de la forme = +pVv —1et 7w — Py —1,
il n’y aura qu’a prendre « peu différent de ete fort petit. Alors
la valeur corrigée a < p, au lien d'étre plus prés de la vraie

valeur de la racine « que la valeur de & » s'en éloignera au con-
traire davantage.

5.1l n’y a donc que le premier cas olt I’on puisse établir un ca-
ractére certain pour le succés de la méthode ; car il est visible
que si la quantité o est i-la-fois plus petite que chacune des ra-
cines a, B8, 3, etc. de I'équation proposée , ou plus grande que
chacune de ces racines, en regardant, comme on le doit , les
quantités négatives comme plus petites que les positives, et les
plus grandes négatives comme plus petites que les moins grandes;
alors la quantité R sera nécessairement de méme signe que la
quantité a—a; et si, parmi ces racines, il y en a d’imaginaires
de la forme = 4 p / — I, ® —p y — 1, il en résultera

1 1 .
dans R les termes < g +7r--a——p\/-—1 » qui se
réduisent 3 f:—-(—wa;—:z,c’ » quantité qui sera aussi de méme signe

que a—a., si a est en méme temps plus petit ou plus grand que .
D’oi I'on peut conelure, en général, que I'usage de la méthode
dont il s’agit, n’est sfir que lorsque la valeur approchée a est &-Ia-
fois ou plus grande ou plus petite que chacune des racines réelles
de I’équation, et que chacune des parties réelles des racines ima-
ginaires ; et que par conséquent cette méthode ne peut étre em-
ployée sans scrupule que pour trouver la plus grande ou la plus
petite racine d'une équation qui n’a que des racines réelles, ou
qui en a d’imaginaires, mais dont les parties réelles sont moindres

que la plus grande racine réelle , ou plus grandes que la plus petite
de ces racines.
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Pour que les valeurs corrigées suceessivement approchent toutes
de plus en plus de la vraie valeur de la racine , il faudra prendre
pour premiére valeur approchée une quantité plus grande que la
plus grande des racines, si c’est celle-ci qu’on cherche , ou plus
petite que la plus petite racine, si on cherche la plus petite ;
alors toutes les valeurs corrigées successivement seront aussi plus
grandes que la plus grande, ou plus petites que la plus petite des ra-
cines, et la condition nécessaire pour la convergence aura cons-
tamment lieu pour toutes ces valeurs, puisque R et a — @ seront
toujours de méme signe , en prenant pour @ chacune de ces mémes
valeurs.

6. Lorsque toutes les racines de 1'équation sont réelles, il est
facile de reconnaitre si la premiére valeur approchée a est plus
grande ou plus petite que chacune des racines ; car en mettant
I'équation sous la forme

(z—a)(#—L)(x—y)... =0,

et substituant @ ~}- p pour x, elle deviendra

(p+a—a)(p+a—pB)(p+a—y)..... =0,

ot a—oy a— 3, .@a—7, etc. seront, dans le premier cas, des
quantités positives, et, dans le second, toutes 'négatives; donc, dans
le premier cas, on aura une transformée en p dont tous les termes
seront positifs , et dans le second cas cette transformée aura ses
termes alternativement positifs et négatifs.

Réciproquement, si les termes de la transformée en p sont tous
positifs, il est évident quil n'y aura alors aucune valeur positive
de p qui puisse satisfaire & I’équation; par conséquent les valeurs
réelles de p seront nécessairement négatives : donc les ragines de
I’équation en p étant a —a, g—a,y —a, ete. il faudra que
ces quantités soient toutes négatives ou imaginaires ; donc la quan-
1ité a sera nécessairement plus grande que chacune des racines
réelles de ’équation , quand méme elle aurait des racines ima-
ginaires.

On prouvera de 1a méme maniére que si les termes de la trans-
formée en p sont alternativement positifs et négatifs, la quantité a
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sera nécessairement plus petite que chacune des racines réelles, soit
qu'il y ait des imaginaires ou non.

7. Mais dans le cas o1 I'équation a des racines imaginaires , on
ne pourra pas s'assurer de la méme manitre que la quantité g
sera en méme temps plus grande ou plus petite que chacune des
parties réelles de ces racines; je ne vois pas méme qu’on puisse
s'en assurer autrement que par le moyen de I'équation dont ces
parties réelles seraient racines. Or, si B =@ 4+py/ — 1, et

y=@®—py —1,0nawmw =B~¥ : ainsi Péquation dount =

sera une des racines, ne peut &tre que celle qui aura pour racines
les demi-sommes des racines de la proposée , prises deux a deux,
et qui, par la théorie des combinaisons, montera au degré
m(m—1 ).
2

Ayant formé cette équation par les formnles que nous avons
indiquées plus haut ( Note TIT), on y substituera a -+ z 4 la
place de I’inconnue ; et si la transformée a tous ses termes positifs,
ou alternativement positifs et négatifs, on sera assuré que le
nombre a sera plus grand on plus petit que chacune des valeurs

de m, et par conséquent aussi que chacune des parties réelles des
racines imaginaires.

8. Newfon n'a appliqué sa méthode qu’a I’équation a%—2x—5—o0
que nous avons résolue (n°® 25). Il suppose d’aberd dans le cha-

pitre IV a = 2, et substituant 2 4 p & la place de x, il a Ia
transformée

O = SR Tt To S O 0F S
d’ou il tire p=—:—o=o, 15 il fait ensuite p =0, 1 4~¢, il a la
nouvelle transformée

0 == 0,061 ~} 11,239 - 6,3¢9* 4 ¢*,

ey o, 061 : -
dott il tire ¢ = — 2— = — 0,0054........ il continue en
3

faisant ¢ = — 0,0054 —+ r, il vient la transformée

0 = 0,000541708 =}~ 11,161967 - 6,37r* - 7°,

SCD Lyon 1
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— 0, 000541708

11, 16196 = = 0,00004353 .....~, et

d’ott il déduit r =
ainsi de suite.

Ainsi les valeurs convergentes de x sont 2, 2,1, 2,0946,
2, 00455147 , dont la derniére est exacte & la dernitre décimale
prés ( numero eité ).

Dans ce cas, la série est, comme l'on voit, trés-convergente.
On’ peut, en effet, sassurer & priori par ce que nous avons dé-
montré, que cela doit étre ainsi.

Car nous avons vu (numéro cité) que les deux auntres racines
de cette équation sont imaginaires, et qu'en les représentant
par w == p /' — 1,0n a & trés-peu pres, p* :% = -

15 R S 465 |
BpAA o RIER L Y
racine a que l'on cherche, il n’y a que ces deux racines imagi-
2(r—a)

= — donc , puisque , outre la

naires, on aura dans ce cas R = Or ¢ étant = 2,

1355

O & & =& == == o mais « étant a trés-peu pres 2,0945. .. .

on aa — a==0,0945....; d’oit I'on voit d’abord que R et o —a
sont de signes différens , et qu’ainsi, pour que la premitre cor-
rection de a soit juste , il faut que la condition 2 (a—a)R41>0
ait lieu. Or on trouve R = —0,6575 et de 12 2 (¢ —a) R=
~— 0, 1244; de sorte que la condition dont il s’agit est amplement
satisfaite. Ainsi on est assuré que la premiére valeur corrigée 2,1
approchera davantage de la vraie valeur de la racine. En pre-
nant cette valeur pour ¢, on a ¢« — a = — 0,0055....; done
a« — a et R étant maintenant de méme signe, les corrections sui-
vantes approcheront toutes de plus en plus de la vraie valeur de la
racine cherchée.

i g - P
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Sur la Méthode d& Approximation tirée des séries
récurrentes.

I.REPRENONS I’équation

2" — Az"~! o Ba"=! — Ca"=?® o etc. — o

dont on a désigné les racines par a., B, , etc. on aura (Not. Ly,
par la nature de ces racines, 'équation identique

" = A2"=! ok Ba"— % e C2"=? - etc.
= (z—a) (2—B) (z—3) (8 —d).. .-

laquelle doit avoir lieu, quelle que soit la valeur de z.

L’identité de I'équation subsistera donc encore em mettant
Z -z aulien de z , quelles que soient les valeurs de x eti; donc
aussi, si apres la substitution, on développesunivant les puissances
de 7, les termes affectés de i*, etc. fourniront d’autres équations
identiques; ce seront les équations que nous avons appelées dérivées
dans la Théorie des Fonctions.

La premiére de ces équations dérivées sera

manr—* — (m —1) Aa"" 2 (m~2) Bar=3 — ete.
=(z—B)(z —2) +(z—a)(x—y)
(x = a) (z — B)

Divisons cette équation par I'équation identique ci-dessus » on
aura
mxm—! — (m—1) Ax™" "2 4 (m—2a) Bam—3 — gc.
Z® o AL = Ba™—2 — Cg™—3 ~+ etc.

1

s +$_1_ﬁ+x_l_y+etc.

Ao —oF

|

i
it
i
I

i
r--L
i
it
I
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équation qui doit aussi étre identique , quelle que soit la valeur
de z. Donc elle le sera encore si on en développe les deux

membres en séries qui procédent suivant les puissances positives
ou négatives de x.

2. Développons d’abord suivant les puissances négatives: la
fraction qui forme le premier membre deviendra

s

et pour trouver les valeurs des coefficiens P, Q, R, ete. il
n’y a qu'a multiplier par le dénominateur x"™— A a™~' - etc.
et comparer ensuite les termes avec ceux du numérateur
mar—*— (m —"1) Ax"~* 4-etc. on aura ainsi

P=m

Q= AP — (m — 1) A

R AQ— BP + (m —2)B

S AR — BQ -+ CP — (m — 3) C,
etc,

ou l'on voit que la suite des quantités P, Q, R, etc. devient
apres le m®c terme une suite récurrente, dont I’échelle de rela-
tion est A, — B, C, — D, etc.

Développant de méme les fractions qui forment le second membre,
il deviendra

T (e B tete) o (@ o B 90 o ete.)
+(a3+ﬁ3+7’3+etc.)%+etc.

Maintenant la comparaison des termes semblables des deux
membres de 1’équation

P
Q
R
S
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et , en général, un terme quelconque dont le quantime sera u,
4 compter de Q, sera égal a o 4~ B* 4 2 - ete. Clest I'expres-
sion du terme général de la série.

On a par-la la démonstration la plus simple de la loi donnée
par Newton pour la somme des puissances des racines. Mais les
formules précédentes sont surtout utiles pour approcher de la va-
leur de la plus grande des racines a, 3, 3, etc. En effet, il est
clair que si toutes ces racines sont réelles, et que « soit, par
exemple , la plus grande des racines , soit qu’elle soit positive ou

négative, la puissance o surpassera d’autant plus les puissances
semblables des autres racines, et méme la somme de ces puis-
sances , que l'exposant u sera plus grand; d’ol il s’ensuit que si
T et V sont des termes consécutifs de la série P, Q, R, etc. on

1 1 1 V -
aura a fres-peu prés ¢ = -, et cette valeur de la racine « sera

d’autant plus approchée que les termes dont il s’agit seront plus
¢loignés du commencement de la série.

5. Si parmi les racines 2, y, etc. il y en avait d’imaginaires,
on aurait, par exemple , B=am —p /' — 1,y =@~—p ¢/— 1}

alors faisant / (#* 4 p*) = Il et L = tang ¢, on aurait
B=TM(cos@—sinpy — 1) et y=T(cos@ —sino \/—'1)3
donc par le théoréme connu

B = 1" (cospo +sinpoy/ — 1)

W =1"(cospp —sinuoy — 1),

et par conséquent

¥ - 9 = an” cosue.

Ainsi, pourva que la racine a soit en méme temps plus grande
que T ou y/ (#* ~ p*), c’est-a-dire plus grande que /' B9, la
. (23 . . s
puissance a surpassera aussi la somme de pareilles puissances
de B et 9.
Donc la méthode ne sera en défaut a4 cause des racines ima-
inaires , qu’autant qu’il s’en trouvera dans lesquelles le produit
> q

i
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réel des deux racines correspondantes, sera plus grand que le carré
de la plus grande des racines réelles ; et, dans ce cas, la série,
au lien de s'approcher et de se confondre i la fin avec une série
géométrique, s’en ¢Eloignera continuellement.

4. Cette méthode rentre évidemment dans celle que Daniel
Bernoulli a déduite de la considération des suites récurrentes , et
qu’Euler a exposée en détail dans son Introduction. Dans celle-cion
donne ala fraction génératrice de la série , pour numérateur, un po-
lynome quelconque d'un degré moindre que le dénominateur ; ce
qui rend les m premiers termes de la série , enti¢rement arbitraires.

Cette fraction se décompose dans les fractions simples —— =
P P T

b c 9.4 r - f
oy oy g 5 etc. d’ou résulte, pour les termes de la série,

cette expression générale aa’ 4+ BRY 4 ¢9" 4 ete. laquelle
donne également , lorsque la racine « est beaucoup plus grande que

chacune des autres, % pour la valeur approchée de «, quelle

que soit la valeur du coefficient a. Mais I'indétermination des
premiers termes de la série , au lieu d’étre nn avantage de cetle
méthode , est plutét un inconvénient; car s’il arrive que les deux

racines o, 3, soient égales, alors les deux termes act + bp*
prennent en général la forme (o' - &u) a; et si les trois ra-
cines a, 3, 3, sont égales, les trois termes aa” - bB* 4 )"

prennent la forme (&’ - &'p - c'p*) o, et ainsi de suite : d’ott
il est aisé de voir que lorsque la plus grande racine a est une
racine double ou triple , etc. la série converge bien moins ra-
pidement vers une série géométrique. En prenant pour numérateur
la fonction prime du dénominateur, ainsi que nous l’avons fait
ci-dessus, tous les coefliciens @, b, ¢, etc. deviennent égaux a
I'unité ; et dans le cas des racines égales a et B, les deux termes

174 . . L . .
o 4 B“ deviennent simplement 24, et ainsi des autres; de

sorte que les racines ¢gales n’influent en rien sur la convergence
de la série.

5. Pour donner un exemple de ce que nous venons de dire, je
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prendrai celui de l'article 346 de I'introduction d’Euler. L’équa-
tion & résoudre est x® — 3 2*+4- 4 =o0, Euler prend o, 1et 3
pour les trois premiers termes , et il forme par I'échelle de rela-
tion, 3,0, —4, la série récurrente 1, 3, 9, 23, 57, 135, 313, 711, etc.
dans laquelle il observe que le quotient de chaque terme, divisé

par le précédent, est toujours plus grand que 2 racine double,
et en méme temps la plus grande.

8i on emploie les formules données ci-dessas, en faisant
me=3, A=3, B=o, C=14,

tous les termes P, Q, R, efc. se trouvent multiples de 5; de
sorte que , rejetant ce facteur pour plus de simplicité, on trouve

par la méme échelle de relation, mais en partant des termes 1,
1, 3, la série

1, 1, 3, 5, 11, 21, 43, 85, 171, 341, etc.

ol1 'on voit que le quotient de chaque terme , divisé par celni qui
le précede, converge treés-rapidement vers la racine double 2.

6. Nous avons développé plus haut I’équation identique

max™— ! — etc. 1

1
X" — Ax™ "'+ etc.  xT— et x— 8 -+ etc.

suivant les puissances négatives de x ; développons-la mainte-
nant suivant les puissances positives : pour cela, soient a — bz
-+ cx* — dz*, etc. les derniers termes du polynome 2™ — Azm—*

~+ Bx™—* — etc. : on mettra le premier membre de I’équation
identique sous la forme

— b+ 2cx —Bdx* + fex® — etc.
a—bx 4+ ca* — da® + ext — etc.

et le développement de cette fraction suivant les puissances crois-
santes de x sera de la forme

— P — Qx — R'a* — §'2* -+ etc.
18

SCD Lyon 1 |

}




38 N O &BEF Y34
en multipliant par le dénominateur, et comparant les termes, on
trouvera

& =6b

aQ' =bP — ac

eR' =bQ — cP’ -} 34

a8 = bR’ — cQ 4 dP’ — 4e¢
etc.

¢e qui donne une série récurrente dont I'échelle est

b c
o . T etc.

Le second membre de la méme équation , étant développé pa-
reillement suivant les puissances croissantes de x, donnera la

série

1

_(;+%+;+etc.)--(-%-[—é—;-—k%—f—etc.)x

1

s EIE.{_'.‘%—;-;?—-[—etc.)m“—{—etc.

de sorte qu’on aura par la comparaison

1 1 1 A ’

_.,..E‘;_;.;—z—{—etc. Q

—-i—-%-—}-#—!—etc. RS

elc.

Ces formules renferment la loi des sommes des puissances réci-
proques des racines.
Il est évident que si o est la plus petite racine, soit positive

. . 1
ou négative, les puissances —, surpasseront d’autant plus la somme
o
des pareilles puissances des autres racines, que « sera plus petite

que chacune des autres racines 8, 3, etc. Par conséquent, si T
et V' sont deux termes consécutifs de la série P’, Q', R/, etc.
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le quotient %; approchera d’autant plus de la valeur de la plus
petite racine réelle de I'équation, que ces termes seront plus
¢loignés du commencement de la série. Ainsi cette série servira
a trouver la plus petite racine, comme la premiére P, Q, R, etc.
sert a trouver la plus grande; et 4 I’égard des racines imaginaires,
on prouvera de la méme maniére qu’elles n’empécheront pas I’ap-

proximation vers la plus petite racine réelle , pourvu que le carré

de cette racine soit en méme temps plus petit que chacun des
produits réels des racines imaginaires correspondantes.

7. On pourrait donc employer cette méthode d’approximation
pour chacune des racines réelles d’une équation quelconque , si-on
connaissait d’avance une valeur approchée 2 de cette racine, telle
que la différence entre cette valeur et la vraie valeur de la racine
fiit moindre en quantité, c’est-a-dire, abstraction faite des signes,
que la différence entre la méme valeur et chacune des autres
racines réelles, et en méme temps moindre que la racine carrée
de chacun des produits des racines imaginaires correspondantes,
¢'il y en a, diminuées de la méme valeur; car alors, en nom-
mant @ la valeur approchée de la racine cherchée, et faisant
& =a- p, on aura une transformée en p, dont la plus petite
racine pourra se déterminer par la méthode précédente ; et cette
racine , jointe a la premitre valeur approchée , donnera la racine
cherchée. Mais on ne saurait trouver les premiéres valeurs qu'en
faisant usage des méthodes que nous avons données; et ces valeurs
étant une fois connues, il est bien plos exact d’employer la mé-
thode d’approximation du chapitre ITI : aussi ne suis-je entré dans
ce détail sur la méthode d’approximation tirée des séries récur-
rentes , que pour ne rien laisser A desirer sur le sujet dont il s’agit,

8. 8i on veut appliquer la méthode précédente & ’exemple de
Newton, on prendra d’abord la transformée p® 4 6p* 4 10p — 1
( Note précédente) ; et comme on sait que la racine réelle est
moindre que o, 1, il s’ensnit que le produit des deux autres ra-

- . . . . 1 .
cines, qu'on sait &tre imaginaires, sera > = > 10, puisque le
]
dernier terme 1 est le produit des trois racines; ainsi on est assuré

que le carré de la racine cherchée est beauconp moindre que le
produit des deux racines imaginaires. On formera donc la série

SCD Lyon 1

i
i




140 N.OIT.E ¥'L

récurrente par le moyen- de la fraction

104 12p - 3p?

1 —10p—bp*—p
aura les termes 10, 112, 1183, 12512, 132330, etc. qu'on peut
continuer aussi loin qu’on veunt par l'échelle de relation 10, 6, 13
chacun de ces termes, divisé par le suivant, donnera les fractions
QECF R or A0
1127 11832 12512
nent 0,089, 0,09467 , 0,094549, 0 0945515, ete. Or nons avons
vu dans la Note précédente que la méthode de Newton donne pour
la valeur de p la série convergente 0,1, 0,946, 0,00455147, etc.
d’ot1 I’on peut juger de P’accord des deux méthodes. En effet, nous
ferons voir plus bas que ces méthodes, quoique fondées sur des
principes différens , reviennent a-peu-prés au méme dans le fond,
et donnent des résultats semblables.

., et Pon

etc. qui , étant réduites en décimales, devien-

A P A
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Sur la Méthode de Fontaine , pour la résolution des
équations.

COMME on ne fait point usage de cette méthode, qui est d’ail-
leurs peu connue, je pourrais me dispenser d’en parler ici; mais
le nom de I’Auteur et la maniére dont il I'a annoncée,, m’engagent
a en donner une idée abrégée, et & examiner les principes sur
lesquels elle est fondée. Je la donne, dit-il, pour Ianalyse en
enticr que I'on cherche si inutilement depuis U'origine de Palgébre.
Voyezles Mémoires de I’Académie des Sciences, pour I’année 1747,
pag. 665.

1. Cette méthode a denxparties. Dansla premitre, I’auteur consi-
dere les équations comme composées de facteurs simples , réels
ou imaginaires de la forme 2 ==a, x a2 by — 1, et con-
tenant un certain nombre de quantités réelles positives et inégales,
@, b, c, etc. Il parcourt toutes les combinaisons possibles des
différens facteurs qu’on peut former de cette maniére , et il cherche
pour chaque systéme de facteurs dans les coefficiens de I’équation,
les conditions qui sont propres a ce systtme, et qui peuvent le
distinguer de fous les autres. Il forme ainsi des tables qui con-
tiennent tous les différens ‘systémes de facteurs et les conditions
qui leur appartiennent ; de maniére qu’'une équation quelconque
€étant proposée , dont les coefficiens sont donnés en nombres, on
pnisse tout de suite reconnaitre quel est le systéme de facteurs dont
elle peut &ire composée. Ainsi on saura sur-le-champ combien elle
a de racines réelles inégales ou égales, positives ou négalives, et
combien elle en a d’imaginaires avec la forme de chacune des
imaginaires,
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2. Pour donner une idée plus nette de ce que je viens de dire ;
a ceux qui ne sont pas & portée de consulter le Recueil des M-
moires de Fontaine , je vais rapporter ici la table des équations
du second degré, avec un précis de la méthode par laquelle ’au-
teur I’a construite ; ensuite je ferai quelques remarques sur cette
méthode.

Dans les formules sunivantes, les lettres m , 7, et a, &, dé-
signent des nombres on des quantités quelconques positives, et
'on suppose que a est toujours une quantité plus grande que &.

|' (z+a) (x+a) ... M—4n=0
(x+4-a+ay—i1) (x4a—ay/—1) .. m*—2n=o
(x+a) (z-+Db) vee . M—41>0
) m*—4n <0
(tatby/—1) (epa—by/—1) § 74 0
| (x4-b+-ay/ —1) (a~4-b—a V' —1) m*—an<o
a4 mx 4n= (x+a) (x—>b)
( (—a) (x—a)..... ceene MP—4n=0
(x—a-tay—1) (x—a—ay/—1) m*—an=o
(x—a) (xz—b) .t mPe—4n >0
mP—An < o
(z—at-by/—1) (x—a—Dby/—1) { LAl S,
| (x—b4-ay/—1) (x—b—ay/—1) m*—2n <o
(7—a) (w-+D)
(x4-ay/—1) (x—ay/—1)
(z~+2) (x—a)

On voit d’abord: dans cette table toutes les combinaisons pos-
sibles des différens facteurs, qni ne peuvent étre ici que x==q,
xEbyonxdataoy—1,xzmadby—~1etxbtal —1.

Pour savoir a quelle forme. d’équatiers chaque combinaison
pouvait se rapporter , on a, déyeloppé l¢s produits, et on les a
comparés aux, équations , en faisant attention que la quantité a
doit étre plus grande que . Jusques-13, la méthode n’a de difficulté
que la longneur du calcul; et tont ’art consiste & trouver les ca-
ractéres, ou, conditions propres. & chaque combinaison.

Ces conditions sont de deux sortes; les, unes sont: données par
des équations déterminées, comme m*— 47 =0, ou m*— 2n.== 0;

X - M~ =
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ce sont celles qui ont lieu lorsqu’on suppose que la quantité » de-
vient nulle , ou devient égale & a. Elles ne sont pas difficiles a
fronver; car, comme ces. suppositions détruisent une des deux
indéterminées a, b, en faisant la comparaison des termes résul-
tans du produit des facteurs avec ceux de I’équation , on a une
équation de plus qu’il n’y a d’indéterminées ; de sorte que, par
Pélimination , on parvient nécessairement & une équation de con-
dition ; c’est ainsi que les facteurs égaux (x+4-a) (x - a) donnent
la condition m*—4n=o0, et que les facteors (£ 4a 4 g y/— 1)
(z 4-a—ay/—1) donnent m* — 27 — o,

Les autres conditions dérivent de celles-ci, en changeant le signe .
d’égalité dans celui de majorité ou de minorité. Elles résultent de
cette considération , que si une fonction des coefficiens m et z
est nulle lorsque a=25 ou b =o, elle sera plus grande ou plus
petite que zéro lorsque @ sera plus grand que b, ou & plus grand
que zéro.

Ainsi, comme le systéme (z - a) (x 4+ a) peut résulter
de celui-ci (z 4 a) (z 4+ £), en faisant 5 =a, ou de celui-
ci(z~4ad-by'—1) (x4a—b V/—1), en faisant b= o, Ia
fonction m* — 472, qui est nulle pour ce systeme-la , ne le sera
plus dans ces deux-ci; et 'on trouve que cette fonction est posi-
tive pour le systtme (z - a) (z~1b), et négative pour le systéme
(x4a4by—r1) (z4+a—by—1).

L’auteur suppose comme un principe général que la fonction
qui est nulle dans le cas de la coincidence de deux systémes, sera
tonjours plus grande que zéro dans I’un, et moindre que zéro dans
Pautre , et il détermine par un exemple particulier celui des sys-
temes ol elle est positive , et celui on elle est négative; mais cette
proposition ne peut pas étre admise sans démonstration ; et il y a
méme de fortes raisons de douter qu’elle soit vraie en général.

Dans les cas dont il s’agit, onen pent=prouver la vérité ,
car le systtme (x -+ a) (2 +'5) étant développé , donne
2 ~4-(a+b) x~+ab; donc m=a -+ p, 7 = ab, et par consé-
quent m* — 4n = (a — b)*, quantité toujours positive. De méme,
le systeme
(z+a+by—1) (x-}-a-——&;/-—-—x)::x’—]—zax—i—a“-q‘—b'

donne m==2z2a, n=a* 45, et m* ~ 4n = — 4 b*, quantité
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toujours négative. On peut démontrer de la méme manitre les
auatres conditions pour les différens systemes des équations du se-
cond degré.

3. L’auteur a appliqué les mémes principes et la méme méthode
aux équations du troisitme et du quatriéme degré, et il a donné
pour ces degrés des tables semblables i celle que nous venons de
rapporter. #oyez le Recueil de ses Mémoires, imprimé en 1764.

L’étendue de ces tables augmente en proportion du nombre des
combinaisons des différens facteurs; et la recherche des conditions
propresa chaque combinaison ou systéme, devient d’autant plus diffi-
cile, qu'il arrive souvent que les conditions qui résultent de ’égalité
de quelques-unes des quantités @, &, ¢, etc. qui sont censées for-
mer une série décroissante , ont lieu pour plus d’un systéme a-la-
fois, et qu'il est alors nécessaire de trouver des conditions pour
distinguer ces mémes systémes entre eux.

L’auteur ne donne aucune régle générale sur cet objet ; il se
contente d’essayer successivement les fonctions les plus simples des
coefficiens m, 7, p, etc. de I’équation , jusqu’a ce qu'il en trouve
une qui soit nulle dans le cas commun & deux systémes , et qui
soit plus grande que zéro dans I'un, et plus petite que zéro dans
T’autre.

C'est ainsi , par exemple, qu'ayant trouvé pour I'équation
x4 mx* + nx 4~ p=o0 que les deux systtmes (x -4 a) (x4 b)
(x4b) et (x+a)(x~+a)(x+b) ont la méme équation de
condition

4(m* —3n) (—3mp+n) — (mn—g9gp) = o,
il cherche une fonction de la forme Am* - Bz, ou Am*+Bmn-4-Cp,
ou ete. telle quelle spit = o daps le cas commun de a = 5, et
qu’elle soit >> o pour le premier systéme, et < o pour le second ;
il trouve celle-ci, 2m® — gmn -~ 27p , qui satisfait a ces deux
conditions.

Quoique I’auteur soit parvenu a trouver ces fonctions pour tous
les cas des équations du troisieme et du quatriéme degré, on peut
douter qu’il soit possible de les trouver en général dans les équa-
tions des degrés supérieurs ; du moins il n'est pas démontré qu’il
existe toujours nécessairement des fonctions qui aient ces propriétés:
ainsi la théorie peut tre aussi en défaut de ce coté.
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4. Aureste, on peut trouver directement les conditions précé-
dentes; car, si on suppose que I"équation

2 mx* 4~ nx 4 p=o

ait un facteur double (- a ), il n’y aura qu’a diviser le poly-
nome z° -}~ mx* -4~ nx <= p par 2* 4202 -} a*, on trouvera le
quotient x - m —2a, et le reste

(n — a* — 2ma 4 4a*) & - p 4= 24 —_— Tt

ainsi il faudra faire séparément

5a — ama - n =
20> — mo* -+ p = o,

(¢ ]

___ mn—agp

d’ou l'on tire = —,
am*—6n

Cette valeur , substitu¢e dans la premiére équation, donne

(mn — op) 4+ 4(m* — 3n) (3mp — n*) = o;

ce qui est la condition commune aux deux systémes.

Maintenant, comme le quotient & -4~ 7 — 2 a forme le facteur
inégal de I’équation, on fera « = b et m — 2a = a pour le
systtme (x~a) (z+b)(z~+0), et a=—=a, m—2a=> pour
le systtme (x ~a) (x--a) (x -+ b); donc, puisque par I’hy-
pothése @ > b, on aura pour le premier systeme m — 24 > a,
ou m — 3a > 0, et pour le second m —3a < 0.

Mais en substituant la valeur de «, on a

am’— gmn -4 a7p

m*—3n 7

M — 3o =

d*un autre cdté, il est facile de s’assurer que , pour les denx sys=
témes, on a m* — 3n > o; car le systtme (x4 a) (z+404) (x-+.2)
donne m = a - 26, n=2ab-~ b*, comme il résulte du déve-
loppement : done

m — 3n=a — 2ab~+ b = (a —b);

et comme pour l'aufre systtme il n'y a qu'a changer @ en &, on
19
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aura de méme m* — 37 = (a — b)*. Donc les conditions pour
les deux systémes seront simplement

am® — gmn - 27p > o pour le premier ;
2m® — gmn - 27p < o pour le second ,

comme Fontaine I’a trouvé.

5. Mais les conditions mémes qui résultent de 1'égalité de quel-
ques-unes des quantités @, b, ¢, etc. ne sont pas towjours par-
ticulitres aux systémes dans lesquels ces égalités ont lieu, comme
Fontaine le suppose ; ce qui détruit un des principaux fondemens
de sa théorie.

Par exemple, il trouve dans le troisitme degré que, pour
I’équation

A mx* —ne —p=o0,
la condition
2m* —mn —p =0
est particuliére au systeme

(x—a)(xt+at+by—1)(z+a—=0by —1),

et doit le distinguer de tous les autres. Mais j’ai reconnu que
cette condition a lieu anssi ponr tout systeme de la forme (z—+-a}
(z—D>) (xz~+¢), qui se rapporte & la méme formule d’équation,
lorsque a - c=2Db; ce qu'on peut aussi prouver & priori.
Ainsi, si P'on a Iéquation 2° 4 2a2* — 52 — 6 = o
comme elle satisfait 4 la condition dont il s'agit, puisque em
faisant m =2, n=5, p=6; on a 2,8——2.5—6=o0, on
pourrait conclure de la table de la page 546 du Recueil des Mé-
moires de Fontaine, que eette équation a trois facteurs de la forme

(z—a)(z4a+By—1)(s+a—by—1),

et que par conséquent elle a deux racines imaginaires , tandis
quelle a au contraire les trois facteurs réels

(z+43)(z—2) (x4 1)
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On doit dire la méme chose de la condition

2t 34ntg 4= 2.3 np* - 27, 3.5 n¢* -
+ 203 5.7np'g — 3. p°pt 4 2°.5¢¢° = o,

que Fontaine trouve ( page 568 ) pour le caractére commun des
deux systémes

(z4a) (z—D0) (zx —btcy —1) (x—b—cy—1);
et (z-a) (.r—fc) (2 —c4by —1) (B==cmby/—1)

appartenant 3 la formule
Zt — 2t - px — g = 0.

Cette condition n’est pas particuliére  ces deux systemes; elle
a lien aussi dans tout systtme de la forme

(z+a)(z—10)(x—c)(z—d)

appartenant 4 la méme formule d’équations ( page 552), pourvu
que l’on ait b 4~ d=2c; c’est ce qu'on peut trouver & priori;
mais ce détail nous ménerait trop loin.

6. On peut conclure de ces observations, qu’il n’est pas toujours
possible de trouver les conditions qui distinguent chaque systeme
de facteurs de tous les autres, en ne considérant dans les quan-
tités a, b, c, etc. qui entrent dans ces facteurs, d’autres rapports
que ceux d’égalité ou d’inégalité, suivant la théorie de Fonzaine.
Mais , quand on le pourrait, le travail pour les trouver dans les
degrés au-dessus du quatriéme , serait immense , et ne serait pas
méme utile pour la résolution numérique des équations , comme
nous allons le montrer en examinant la seconde partie de la
Méthode.

7. Dés qu'on aura trouvé , comme Pauteur le suppose,, la forme
de chaque facteur de P’équation proposée , il n’y aura plus qu’a
déterminer les valeurs des quantités e, &, ¢, etc. qui entrent dans
ces facteurs, et qu'on sait étre toutes positives et inégales; et
voici comment il s’y prend. Il développe les produits des facteurs,
et le comparant 3 l'équation proposée, il a anmtant d’équations
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quil y a d’indéterminées @, &, ¢, ecte. il élimine toufes ces
quantités , hors deux, qu’il se propose de déterminer : il a ainsi
deux équations entre ces deux quantités; il fait la plus grande de
ces quantités = R, et la plus petite =R 3 et éliminant R,
il a une équation homogtne en o et B, dans laquelle il substi-
tue x @ —y pour o, et zQ—4-u pour f.

Il suppose d’abord x =1, y =0, z=0, =13 il a une
équation en @, dans laquelle il fait successivement =1, 2, 3, etc.
jusqu'a ce qu'il trouve deux résultats de signe contraire ; alors
il fait @ =A, A étant le plus petit des deux nombres qui ont
denné des résultats de signe contraire : donc a = A, = 1.

Il fait ensuite x = A, y=1, z=1, u=— o; et dans I’équa-
tion résultante en ¢, il cherche de méme deux substitutions qui
donnent des résultats de signe contraire : nommant B le plus petit
des deux nombres, il fait ¢ = B; donc &« — AB 1, B =B.

Il continue de la méme maniére, en faisant x — a la derniére
valeur de a, y a l'avant-derniére , z== 4 la dernitre valeur de 8,
et « a Pavant-derniére.

Substitnant ensuite successivement ces valeurs de « et 8 dans
I’expression rationnelle de R qui résulte des deux équations, on a
celles de a et b, d’autant plus exactement, que les opérations sur
a et B ont été poussées plus loin.

Pour en donner un exemple, je vais rapporter celui que I'on
trouve dans les Mémoires de I’Académie de 1747, page 67a.

Soit I'équation &* — 32 -~ 1 = 0, comme elle se rapporte &
la formule 2* —max—41n, en faisant m =5, n — 1 , Si on exa-
mine les conditions relatives & cette formule dans la table donnée
ci-dessus, on trouve que celle-ci m* — 4n =0 a lieu; d’o1 I’on
conclut que les deux facteurs sont de la forme (z — ) (z — b).
On a donc en développant a 4~ b=173 et ad — 1.

Soit a=aR, b=fR, on aura R (a 4 ) =3, Raf=1;

dontc-R...—_ﬂcfHg et 9afs = (a -+ B)*; savoir,

a — 7af =B = o,
o I'on fera e =2 @4y et B=2z0¢ + u.
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@:1;

Soit, 1°. 2=1, y=0, 2=0, u=1; done &=
substituant ces valeurs, on a ¢* — 7@ ~ 1 = o : faisant
¢ =1, 2, etc. jusqua @ = 6, on a des résultats neégatifs 3
mais ¢ = 7 donne le résultat 1 ; done ¢ = 6, donc « = 6,
=1, R = -

7

2. 2=06, y=1,z=1,u=0; donc a=60-41, =0,
et I'on a I’équation 5¢* — 5¢ — 1 = o.

Ici @ =1 donne le résultat — 1, @ =2 donne 9:doncp=r1;
ebde la o=, B==ug R:E.

3. ®=q,y=6, z="1, u=1; donca =706, B =0 13
et substituant, on a l'équation @* — 50 — 5 = o. Faisant
@=1, 2, etc. jusqu’a ¢ =5, on a des résuliats négatifs; mais
@ =6 donne le résultat 1 : donc @ =5, et de 12 s 41, 8 =06,

et R = -5—, et ainsi de suite,
47

8. Telle est la méthode d’approximation que Fontaine a donnde
sans démonstration dans son Mémoire de 1747, et qu'il a redonnée
de méme dans le Recueil de ses Mémoires. Elle suppose , comme
I’'on voit, que I’on peut toujours, par la substitution des nombres
1, 2, 3, etc. au lien de ¢ dans les différentes équations en o ,
trouver deux nombres qui donnent des résultats de signe différent ;
ce qui, par ce que nous avons démontré dans le chapitre I (n° 5
et suiv.) n’a lieu qu'autant que ces équations ont des racines
positives dont la moindre difl4rence est plus grande que l'unité.
D’apres cette considération, il est facile de trouver des exemples
ol la méthode de Fontaine sera en défaut.

Soit, par exemple, ’équation

3 o ;
x' — 22* — 23x -+ 60 = o,

qui se rapporte a la formule #° — mz* — nx - p, en fajeant
m=2, 1=23, p==0o. La table de la page 547 du Recueil

des Memoires de Fontaine, donne ces trois conditions

4(m*  5m) (2 £ 5mp) — (— mn 4 gp¥ 50
mn—p <0, m—n-<o,
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pour le systtme (x + @) (x — &) (x — ¢), lesquelles se trouvant
remplies ici, il s'ensuit que ce systeme est celui de I’équation
proposée.

Pour trouver les trois quantités positives et inégales a, b, ¢, etc,
on comparera le produit des facteurs

2+ (@ — b —c) +(-—-a&-—ac+lm)x+abc
avec I’équation donnée, on aura ces trois équations
a—b—c=—2, —ab— ac 4 bc = — 23 et abc =60.

Eliminant ¢, on aura ¢ = @ — b - 2, et les deux auires
¢quations deviendront

@ —ab 40+ 2 (a —b) = 23;
(a — b)) ab 4 2ab = 6o
et faisant ¢ = aR , b/ = BR, on aura
R (a* —afB 4+ £)~+ 2R (¢« — ) =25
Ri(a —f)ap 4+ 2R*ap = bo.

Enfin , éliminant R, on aura une équation homogene du sixieme
degré en o et B, réductible i cette forme

(20(0-H-B)—41(a) (1594 ) — 34 8) (12 (w4 B*)+-2528) =o.

Maintepant on fera, suivant Fontaine, e« = 2@ -y,
B =z @ -+ u, et on supposera dans la premiére opération x =1,
§y=0, 2=0, u=1;ce qui donne a =9, £ =1: I'équation
sera donc

(20(@*+1)—410) (15(0*41) —340) (12(¢*+4 1)+ 250) =o0;

et il fandra faire successivement ¢ =1, 2, 3, etc. jusqu’a ce que
I’'on trouve deux valeurs de @ qui donnent des résultats de signe
contraire, ce qui n'arrivera jamais, les résultats étant toujours
positifs, comme il est facile de s’en convaincre par la simple

inspection de P’équation. Ainsi la méthode sera en défaut dés la
premiére opération.
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Tl est atsé de voir qu'on ne peut avoir des résultats négatifs qu’en

donnant & @ une valeur intermédiaire entre 1 et 2. Par exemple

: .9.123 ; :
en faisant ¢ = g, on trouve le résultat ——7-31—5—%-; mais cela

est contraire a l'esprit de la méthode de Fontaine, qui suppose
que a et 8 sont tovjours des nombres entiers. D’ailleurs, si on
voulait admettre pour ¢ des nombres fractionnaires, il serait bien
plus simple d’opérer immédiatement sur I'déquation proposée , en
cherchant deux valeurs de Pinconnue qui donnent des résultats de
signe contraire; mais la connaissance de la forme des facteurs ,
qui est l'objet des tables de Fontaine, devient inutile pour cette
recherche, et la difficulté du probléme demeure en son entier.

Nous remarquerons encore que , puisque dans la premiére opé-
o

ration on fait @:Ezg, Péquation ‘en ¢ sera touwjours, géné-
ralement parlant, d’'un degré plus haut que I'équation proposée ;
car si @ et b sont deux racines réelles, les racines de Péquation
en ¢ seront tous les quotiens qu'on peut former en divisant une
racine par l'autre ; de sorte que si m est le degré de la proposée ,
m(m — 1) sera celui de 'équation en ¢, laquelle sera d’ailleurs
nécessairement du genre des réciproques.

Mais si @ étant une racine réelle, b était la partie réelle de deux
racines imaginaires, alors g serait le quotient d’une racine divisée

par la demi-somme de deux autres racines, et I’équation en ?
m(m—1) (m—2)
P .

serait du degré

9. Aureste, comme I’équationen a et 3, que ’on trouve par le
procédé de Fontaine, est nécessairement une équation homogene,

. a
elle n’a, & proprement parler, qu’une seule inconnue g» ct la sub-

stitution de @ - y a la place de «, et de Z@—u a la place

. \ i 3 r 3 4y ,
de 2, revient & substituer immmédiatement ?;;I{; a la place de

Pinconnue de cette équation ; or cette formule est Pexpression gé-
nérale des fractions convergentes qui résultent d’'une fraction con-
tinue, dans laquelle @ représente successivement les dénominatenrs

de cette fraction, et %, %,7 sont les devx fractions successives qui
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précedent la fraction ‘I‘;’%%, comme il résulte de la théorie con-
nue des fractions continues. Ainsi il parait que Fonfaine a cherché
a exprimer le rapport entre les quantités c et 8, qui est le méme que
celui entre les quantités ¢ et b, par les fractions convergentes
dépendantes des fractions continues; mais la difficulté consiste &
a
b
par une équation. Foyez ci-dessus I’Article IV (n° 78).

Je me suis un peu étendu sur l’analyse de la méthode de
Fontaine , parce que je ne connais jusqu’a présent que deux
Auteurs qui en aient parlé, &’'.4lembert dans I'Encyclopédie, au
mot Equation , et Condorcet dans I'Histoire de I’Académie des
Sciences pour les années 1771 et 1772, et que l'un et ’antre se
sont contentés de jeter des doutes sur cette méthode, sans donner
les moyens de l'apprécier.

déterminer les valeurs de ¢ lorsque la fraction - n’est donnée que

T T P i S o o B
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Sur les linites des racines des équations, et sur les
caractéres de la réalité de toutes leurs racines.

Lis recherche des limites des racines est le premier probléme
qui se présente dans la théorie des équations, apres celui de
leur résolution générale. Comme cette résolution est bornée jus-
qu'ici au quatritme degré, et comme il est démontré, par la
considération des fonctions des racines, que si elle est possible
au-dela de ce degré, ce ne peut étre qu’en résolvant des équations
d’un degré beaucoup plus élevé ; ce qui donnerait des expressions
intraitables par leur complication : on peut dire que c’est du pro-
bléme des limites que dépend maintenant tout 'art de résoudre les
équations. En effet, dés qu'on a trouvé des limites particulieres
pour chaque racine, on peut les resserrer par des substitutions suc-
cessives, et approcher ainsi de la valeur de la racine autant que
V’on veut.

1. Onasenti avant la fin du dix-septiéme siécle , la nécessité de
s'occuper de ce probléme , et dés qu’on eut trouvé que I’équationy
formée en multipliant chaque terme d’une équation donnée par
I’exposant de son inconnue, renferme les conditions de 1'égalité
des racines de la proposée , on découvrit bient6t que les racines
de cette méme équation ainsi formée étaient les limites de celles
de I’équation primitive. On sait que Hudde est 'anteur de la pre-
miere de ces deux importantes découvertes; et je crois' que la
seconde est due & Rolle qui I'a donnée dans son Algébre, im-
primée en 1690, et qui en a faitla base de sa méthode des Cascades.
Suivant cette méthode, les limites des racines d’une équation dé-
pendent d'une équation d’'un degré inférieur d'une unité, et les

20
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limites des racines de celles-ci dépendent de méme d’une autre
équation d’un degré moindre d’une unité , et ainsi de suite ; de
sorte que, pour parvenir aux limites des racines de I’équation
proposée, il faut résoudre des équations différentes et successives ,
qui vont toujours en baissant d’un degré. Voyez Z’Analyse de-
montrée de Reyneau, ou cette méthode est exposée avec beaucoup
de détail. Mais la longueur du calcul qu’elle demande, et Iincer-
titude qui nait des racines imaginaires , I’ont fait abandonner de-
puis long-temps ; et 'on aurait peut-étre été obligé de renoncer a
avoirune méthode générale pour résondre les équations, si on n’avait
pas trouvé, pour déterminer les limites des racines, un moyen
indépendant de la résolution de toute équation , comme on I'a
vu dans le Chapitre premier et dans la Note IV*.

La considération des maxima et minima des lignes parabo-
liques a conduit Stirling & une méthode pour déterminer le nombre
et les limites des racines réelles du troisiéme et du quatrieme degré,
laquelle a été généralisée par Euler dans son Calcul différentiel.
Cette méthode revient.a celle de Rolle dans le fond ; mais elle
embrasse également les racines réelles et les racines imaginaires,
et pourrait fournir des formules générales pour distinguer ces ra-

cines dans les équations du cinqui¢me degré, an moyen des racines
du quatrieme.

La méme considération a fait trouver & De Gua une méthode
pour déterminer les caracteres de la réalité de toutes les racines
d’uné équation quelconque. ( Mémoires de I'Académie des
Sciences, année 1741, )

Nous avons via que c¢e probleme peut se résoudre aussi par le
moyen de 1'équation , dent les racines sont les carrés des diffé-
rences entre les racines de 'équation donnée ; mais cette solution
est fondé&e sur la forme méme des racines imaginaires, au lieu
que fa théorie de De Gua est indépendante de cette forme ; et sa
méthode a de plus 'avantage de n’exiger que le calenl d*équations
de degrés inférieurs & celui de 1’équation proposée.

Comme ces différentes méthodes sont intéressantes par elles-
mémes , et encore plus par 'usage dont elles peuvent étre dans
plusieurs occasions , j'ai cru qu'on serait bien aise de les trouver
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ici réunies, et déduites d’une méme théorie , fondée uniquement
sur les premiers principes de I’analyse des équations.

2, Soit en général Fx une fonction rationnelle et sans diviseur,
telle que

" 4 Az" = o Ba"=* 4 Ca"=?% - etc, - V;

si on nomme «, f3, 3, etc. les racines réelles de I'équation
Fz = o, c'est-a-dire les valeurs de 2 qui peuvent satisfaire 3
cette équation , on aura I’équation identique

Fr=(z—a)(z—pB) (a';—-;/) sy

Sfx étant une pareille fonction de «, mais d’un degré moindre
que m, et qui ne pourra jamais devenir nulle ni négative, quelque
valeur qu'on donne & x (Note II).

Cette équation devant avoir lieu, quelle que soit la valeur de =,
elle aura lieu aussi en mettant x 47 i la place de =, quelle
que soit la valeur de 7; donc, développant les fonctions suivant
les puissances de Z, il faudra que tous les termes affectés d’une
méme puissance de 7 se détruisent mutuellement; ce qui donnera
encore autant d’équations identiques qu’on pourra trouver ainsi
par le développement actuel. Mais comme ces nouvelles équations
ne sont autre chose que celles que nous avons appelées derivédes
dans la Théorie des fonctions, nous emploierons ici, pour plus
de simplicité , la notation et l'algorithme de cette théorie; et
Papplication que nous allons en faire aux équations fournira un

nouvel exemple de son usage dans 'algtbre, dont elle n’est pro=
prement qu’une branche.

3. Désignons, pour abréger, par ¢z la fonction
(2 —=0a) (z—B)(z—19) (z — PYe. FrTT

on aura P'équation identique Fz = @a X fz; d’ou l'on tirera
sur-le-champ P’équation dérivée

Fr= 0z X fo 4 gz x fx;
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et I’on trouvera

Pr=(x—pB)(x—y) (x—d)....(x—a) (z—2) (x—J). ...
+(xz—2a) (z—B) (z=—J). ...+ (z—a) (—B) (x—~7)....
-}~ ete.

Supposons que les racines o, 8, 3, etc. soient rangées par ordre
de grandeurs, en commengant par les plus grandes positives, et
finissant par les plus grandes négatives. 11 est facile de voir, par
Ia nature de la fonction ¢z, qu’en faisant x =« , on aura ox>o0,
qu’en faisant x =3, on aura ¢’z < o, quen faisant x =5 9, O
aura @’x > o, et ainsi de suite. D'un autre c6té, en faisant
x=uda, 8, 3, etc. on a toujours px =o, et fx >0, par la
nature de ces fonctions. Donc

x o donnera F'z > o
@ b SRR SR G | e

el N e i

et ainsi de suite.

Or, en prenant la fonction dérivée du polynome Fz, on a
Fao=mar—* 4 (m—1)Az"~* 4 (m—2) Ba™—* 4 etc. + T;

donc I'équation F'x=o0, qui est du degré m — 1, aura néces-
sairement des racines réelles qui tomberont entre les valeurs des
racines a et B, B ety, 3 et J, etc. (Note Ire),

4. Désignons par a,, B,, 7, , etc. les racines réelles de I’'équa-~
tion F'x = o0, et I'on démontrera de la méme manijére que

x = a, donnera F'z > o

x s M e T

& ORI o
et ainsi de suite.

Drolr il sensuit que I’équation F'x = o, dans laquelle

Fe=m(m — 1) 2"=* o (m — 1) (m — )i
~+ (m = 2) (m = 3) Ba"=4 4 etc. + 28§,
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aura aussi des racines réelles qui tomberont entre les Valeur_-, des
racines a, et 3,, B, et 3,, etc. ‘et ainsi de snite.

Tl résulte de ces formules, différentes conséquences que nous
allons développer.

Si I'équation primitive Fz = o a deux racines égales, 1’équa-
tion dérivée I’z — o aura une racine qui, devant tomber entre
ces deux, leur sera encore égale; par conséquent, le facteur qui
contiendra celte racine, sera un diviseur commun des deux poly-
nomes Fx et F'x; ce qui est d’ailleurs évident , parce que le
polynome Fx contenant le factear carré (x — «)*, le polynome F'x
contiendra encore le facteur simple x— a. Ainsil’équation F'z =o
renferme la condition pour qu'une des racines de 'équation Fx=o,
soit double.

On prouvera de la méme maniére que, si ’dquation Fx=o
a trois racines égales , le facteur qui contiendra cette racine sera
un diviseur commun des trois polynomes Fax , F'x et F'x; et que
les deux équations F'z =o , F'x = o contiennent les conditions
pour que I’équation Fa = o ait trois racines égales, et ainsi de
suite ; ce qui donne les théorémes connus sur les racines égales.

5. Considérons d’abord les racines réelles de 'équation Fx=o0,
en tant qu’elles peuvent étre positives et négatives, et supposons
qu’elle en ait un nombre p de positives, et un noembre ¢ de né-
gatives. Donc I’équation F'z = o aura nécessairement p — 1
racines réelles positives, ¢ — 1 racines réelles négatives, et de
plus une racine réelle qui pourra étre positive ou négative; car
puisque , entre deux racines consécutives de I'équation Fx =o,
il en tombe nécessairement une de 1’équation F'z=o; il en tom-
bera p — 1 positives entre les p positives, ¢ — 1 négatives entre
les ¢ négatives, et une entre la plus petite positive et la premiére
négative , qui pourra étre positive ou négative.

Donc, si Péquation Fxr =0 a plus de racines positives que
Péquation "z = o, elle ne peut en avoir qu'une de plus, et si
elle a plus de racines négatives que celle-ci, elle n’en peut avoir
quune de plus.

Or, comme toute équation a tonjours un nombre pair ou impair
de racines positives, suivant que son dernier terme est positif ou
négatif (Note IT), il s’ensuit que si les derniers termes sans = des
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équations Fx =0, F'x = o, sont de méme signe, I’équation Fx
ne pourra pas avoir une racine positive de plus que I’équation
F'x = o; donc, dans ce cas, elle ne pourra avoir qu'une racine
négative de plus que cette derniére équation, et par conséquent
aussi elle ne pourra avoir une racine positive de plus que celle-

ci, que dans le cas ol les derniers termes des mémes équations
seront de signe différent.

Donc, en général, I'équation Fxr=0 ne pourra avoir qu’une
racine positive ou négative de plus que I’équation F'x = o, suivant
que leurs derniers termes sont de signe différent ou de méme signe.
Par la méme raison, 1'"équation F' = 0 ne pourra avoir qu'une
racine positive on négative de plus que I’équation ¥z =—o, suivant
que leurs derniers termes seront de signe différent ou de méme
signe , et ainsi de suite.

Or on voit, par les formules ci-dessus, que le dernier terme
de ’équation Fax = o est V, que le dernier terme de I’équation
F'x=o, est T, que le dernier terme de I"équation F"z=—o0, est 28§,
et ainsi de suite; de sorte qu’en prenant ces équations 4 rebours,
la (m — 1 )m° aura pour dernier terme 2.3... (m — 1) A,
la (m — 2 )me aura pour dernier terme 2.3... (m — 2) B,
la (m — 3)me aura 2.3... (m — 3)C pour dernier terme,
et ainsi de suite. Mais la ( m ~— 1 )me équation on F "~V x=o,
devient

2.3.4....mx -} 1.2.5....(m — 1) A = o,

i 5 s £a 2 A
ui a, comme l'on voit, la racine positive ou négative — =
q ’ E g =

2
suivant que A est négatif on positif. Donc la (72 — 2 )ime équation
ne pourra avoir une racine positive ou négative de plus que
celle-ci, qu’antant que B sera de différent ou de méme signe
que A. De méme, la (m — 3)im¢ équation ne pourra avoir une
racine positive ou négative de plus que la (7 — a)™me, qu’autant
que C sera de différent on de méme signe que B, et ainsi de
suite.

D’olt 'on pent conclure que Péquation Fx==o0, on

Z" 4= AanZi A Bar=t o Canzi 4etc. =V =0
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ne peut avoir plus de racines positives ou négatives qu'il ¥ a dans
cette équation de termes consécutifs de différent ou de méme signe,
¢’est-a-dire que de variations ou de permanences de signes par
conséquent , si ’équation a toutes ses racines réelles, elle aura
précisément autant de racines positives que de variations, et au-
tant de négatives que de permanences.

Clest 1a le fameux théoréme de Descaries, que les Anglais at-
tribuent & Harriot, et dont on a différentes démonstrations donndes
par De Gua dans les Mémoires de Paris, par Segner et Epinus
dans ceux de Berlin, par Kestner dans le Commentaire sur I’ Arith-
métique de Newfor , etc. Jai rapporté la précédente, parce qu’elle
découle naturellement de notre analyse ; cependant la plus simple
de ces démonstrations est celle que Segner a donnée dans les
Mémoires de Berlin de l'année 1756. Elle consiste simplement
a faire voir quen multipliant une équation quelconque par z — ¢,
on augmente d’une unité le nombre des variations de signe , et
quen la multipliant par <~ 2, on augmente aussi d’une unité
le nombre des permanences, quelle que soit la valeur des coeffi-
ciens de 1'équation.

6. Nous allons considérer maintenant les racines de I'équation
Fx =o0, comme réelles ou imaginaires.

Soient, comme ci-dessus, «, (2, ¥ » ete. les racines réelles de
Péquation Fxr —o, et a,, ,, 7., ete. les racines réelles de 1 équa-
tion F'x = o0, ces racines étant rangées par ordre de grandeur.
Je dis que des racines «, 8, 5, etc. il ne peut y en avoir qu'une
qui soit plus grande que «,, qu'une qui tombe entre &8s,
qu'une qui tombe entre 3, et 9,, et ainsi de suite; et enfin une
seule plus petite que la plus petite des quantités «,, 3,, 7,, etc.
Car si o et 8, par exemple, étaient a-la-fois plus grandes que a,,
comme entre les deux racines a et B il doit tomber nécessaire-
ment une racine de ’équation F'z = o , cette racine serait alors
plus grande que «,; done «, ne serait plus la plus grande des ra-
cines de F'x =0, comme on le su ppose. De méme , si deux racines
£ et 3 tombaient -la-fois entre les deux a, et B,, comme entre
B et o il doit nécessairement tomber une racine de I’équation
F'x=o0, cette racine tomberait aussi entre a, et B, , contre I’hy-

pothese , puisque celles-ci sont supposées se suivre relativement &
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leur grandeur , et ainsi de suite. Enfin si plusieurs des racines o;
B, 7, etc. se trouvaient plus petites que la plus petite des racines
a5 B.s 7., etc. comme il tomberait nécessairement entre -elles des
racines de I’équation I’z = o, ces racines seraient donc encore
plus petites que la plus petite des mémes racines a., 8., 3., €tc.
ce qui ne se peut.

Or, puisqu’on a en général

Fr=(zx—a)(z—B)(x—19)..... X fx,

il est clair qu’en substituant o, an lien de «, si aucune des racines
o, 3,9, etc. n’est plus grande que a,, la valeur de Fx sera
positive; et si la seule racine o est plus grande que o,, la valeur
de Fz deviendra négative, puisque , dans le premier cas, tous
les facteurs simples seront positifs, et que, dans le second, il n’y
en aura qu'un de négatif, le polynome fz conservant toujours
une valeur positive.

Supposons ensnite qu’on substitue 3, au lieu de x, et si aucune
des racines o, 8, 3, etc, ne tombe entre «, et 3,, cette substi-
tution donnera une valeur de Fz de méme signe que la substitution
de a, ; mais elle donnera une valeur de signe contraire si une des
racines tombe entre a, et 3,. Car il est visible que tout produit,
comme (2,—a) (8,— ) est toujours nécessairement positif, tant que
la quantité « est a-la-fois plus grande ou plus petite que chacune
des quantités a,, 3,; qu’'au contraire, il est nécessairement né-
gatif si la quantité a se trouve entre les deux quantités «, et §,,
c’est-a-dire plus grande que l'une d’entre elles et plus petite que
Vautre. Or, la substitution de «,, au lieu de & dans Fx, donne

(aty — a) (&, — B) (e ='9).... b g b
et la substitution de 8, au lien de = dans la méme fonction , donne

(B."— “’) (ﬁx'_' g) (ﬁl "'"‘7)""'fﬁl3

donc le produit de ces deux quantités, savoir, la wvaleur de
Fa, < Ff3,, sera de la forme

(=) (Bi—a) (2. —P) (B—F) (=) (Bo=2)- - - X fa X fB..

Donc ce produit sera positif si aucune des quantitésa, 8, 3, etc.

SCD Lyoq




NOTE VTIITI 161

ne tombe entre les quantités «,, (3, ; et il sera négatif si une
seule des quantités a, 8, 5, etc. tombe entre les quantités a., f3,,
puisque les quantités fo, et £8, sont toujours essentiellement
positives ;. par conséquent, les valeurs de Fe, et de Fp, seront

de méme signe dans le premier cas, et de signe différent dans
le second. :

» On démontrera de la méme maniére,
au lien de « dans Fz, donnera un rés
de:signe contraire a celui de la substitution de B. ; suivant qu’au-
cune des racines a, 3, ¥ » etc. ne tombera entre a«, et ¥:» O
quil en tombera une, et ainsi de suite.

Enfin, si on désigne par v, la dernitre en grandeur des racines
% 5 By's 7.5 etc. on trouvera, par 'expression de Fz en facteurs,
que le résultat de la substitution de v, au lieu de = dans Fx, sera
positif ou négatif, snivant qu’aucune des racines oty 5 % 57810
ne sera plus petite que v,, ou quil ¥ en aura une plus petite
que v, , le nombre de ces racines étant pair; et que , lorsque ce
nombre sera impair, le méme résultat sera, au contraire, positif
ou négatif, suivant qu'une des mémes racines sera plus petite
que v, , ou quaucune d’elles ne sera moindre que v,. O¢ comme
le nombre des racines imaginaires est toujours' pair, le nombre
des racines réelles «, £, ¥, ete. de Véquation” Fz == 0, sera
nécessairement pair ou impair, suivant que le nombre total des
racines, c'est-a-dire le degré m de I'équation, sera lui-méme pair
ou impair. -

7- On pourra donc toujours juger de la nature des racines d*une
€quation quelconque de degré m , Fao — o par celles de I’équa-
tion dérivée F'x = o, qui est toujours d’un degré moindre d'une
unité. Car ayant les racines réelles ey B, ¥y et v, de celles-ci,
qu’on suppose rangées par ordre de grandeur, il n’y aura qu'a les
substituer successivement, au lieu de « , dans ’équation proposée ;
et on en conclura, 1° qu’elle aura ou n’aura pas une racine plus
grande que a,, selon que Fa, sera < on o e

2°. Qu’elle aura ou' n'aura pas une racine comprise entre «,

et B, selon que FfB, sera de signe différent ou de méme signe
que Fe,. :

que la substitution de 5,
ultat- de méme signe ou

3% Qu'elle aura ou n’aura pas une racine comprise entre 3,
21
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et ., selon que Fy, sera de signe différent; ou de méme signe
que FgB,, et ainsi de suite.

Et qu’enfin elle aura ou n’aura pas une racine plus petite que v, ,
selon que v, sera positif on négatif dans le cas de m impair, et
négatif ou positif dans le cas de m pair.

Ainsi on connaitra par ces régles, non-seulement le nombre
des racines réelles de la proposée , mais encore leurs limites; et
si on veut compléter ces limites a I’égard des racines plus grandes
que o, , ou plus petites que v, , il n’y aurait qu’a chercher encore,
par les méthodes du chap. IV (n°® 12), les limites des racines po-
sitives et des racines de I’équation proposée.

Nous remarquerons ici, a Voccasion des régles données dans cet
endroit d’aprés Newtlon et Maclaurin , pour trouver ces limites,
que Rolle les connaissait déja , comme on le voit par les cha-
pitres V et VI du second livre de son Algebre.

8. Nous avons supposé jusqu’ici que 1’équation proposée pouvaif
avoir des racines imaginaires mélées avee les réelles; examinons
présentement ce qui doit résulter de la supposition que toutes ses
racines soient réelles.

Il est d’abord évident que 1’équation Fax = o du degré m,
aura m racioes réelles , et que l’équation dérivée F'z = o du
degré m — 1, aura aussi nécessairement m — 1 racines réelles,
puisque, entre deux racines réelles consécutives de l'équation
Fax = o, il tombe toujours une racine réelle’ de Péquation
Fz = o. Par la méme raison, la seconde équation dérivée
F’xz = o aura aussi nécessairement toutes ses racines réelles, et
ainsi de. suite.

Ainsi la premitre condition pour qu’une équation aif toutes
ses racines réelles, est que ses équations dérivées aient aussi
toutes leurs racines réelles ; mais celles-ci pourraient avoir toutes
leurs racines réelles, sans que I’équation primitive en efit aucune.

Supposons donc que les m — 1 racines d,, Bis yuy ete. de
’équation F'x = o soient toutes réelles , et voyons quelles sont
les conditions nécessaires pour que les m racines a, B, », elc.
de Péquation Fx.= o soient aussi nécessairement réelles. Puisque
nous avons démontré, en général, que les racines réelles de I’équa-
tion Fx = o ne peuvent tomber plus d’une: a-la-fois dans chaque
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intervalle entre deux racines consécutives de I'équation Fa' = o,
et qu’il ne peut y en avoir aussi qu’'une plus grande et une plus
petite que la plus grande et la plus petite de cette équation il
est encore évident que, lorsque ses racines sont toutes réelles ,
et au nombre de m, elles doivent nécessairement étre telles que &
soit plus grande que «,, que 3 tombe entre «, et £, , que 3 tombe
entre B, et 3., et ainsi de snite. Au confraire, si elles n’étaient
pas toutes réelles , comme le nombre des réelles ne pourrait alors
surpasser m — 2, et serait, par conséquent, moindre que celui des
racines a. s (3., .5 etc. il est visible que la méme disposition ne pour=
rait plus avoir lieu, et qu'il y aurait nécessairement quelque inter-
valle entre ces derniéres racines, dans lequel il ne tomberait aucune
de celles de I’équation Fx == 0, ou au moins qu'aucune de celles-
ci ne serait plus grande oun plus petite que la plus grande ou la
plus petite des racines a,, £, , Y ekl
Donc , par ce qui a été démontré ci=dessus’; si on substitue
successivement au lien de x dans Fa toutes les racines a,, £
715 elc. on aura nécessairement dans le premier cas

Ty

Fa. <o, FB:>o0, Ey.< o, #ta

et, dans le second cas, il y aura une ou plusieurs de ces condi-
tions qui n’auront pas lien.

D’'un autre c6té, en substituant successivement les mémes ra-
cines a,, 3., 7., etc. dans la seconde fonction dérivée F'x, on
aura toujours, comme on l'a vu plus haut,

Flat, > 050 Bl <o F'y. > o,  ete.

Donc, en combinant ces conditions avec les précédentes, on en
conclura que lorsque les racines de I'équation donnée Fz — o
sont toutes réelles , les quantités Fa, X F'a,, Ff, x F'3 ,
Fy. X F'), etc. seront toutes négatives, et qu'au contraire il
y en aura nécessairement de positives si 1'équation donnée a des
racines imaginaires. e

On aurait le méme résultat si on considérait les quotiens ;":; A

5-—.%: » etc.et en général des fonctions de la forme M ( Fa. )= (F %),
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M(FB.)"(E"B. ), etc. M étant un coefficient positif ou une fonction
quelconque essentiellement positive ;- et x5 » des nombre
impairs positifs ou négatifs. : &)

Or, si on fait Fx <X F'a=y, ou en général M (Fa)+ x (Frx)yr=y,
et qu'on €limine ensuite 2 au moyen de ’équation F'x =0, dont
les racines sont 'a;, B,, 7., etc. on aura une équation en y du
méme degré que cette équation, et dont les racines seront les va-
leurs de y, qui résulteraient de’ la substitution successive des ra-
cines a;, B, 743 etc. a'la place de x. Donc, si. ces valeurs sont
toutes négatives, I’équation en y n’aura que des racines négatives,
et par conséquent tous ses termes auront le signe plus. Et récipro-
quement , si tous les termes de cette équation ont le signe plus ,
elle n’aura que des racines négatives ; et les valeurs de ¥ seront
toufes mégatives. 8138

‘9. On peut conclure de 1a que les caractéres de la réalité des
racinesde F'équation F& = o, sont que ’équation dérivée. F'zz — o
ait toutes ses racinesréelles; et que I'équation:en y résultante de
Pélimination: de @, au moyen de cette ‘dernidre &quation et.de
Péquation Fx x F'z= y, ou M (Fa)“ (F'z) =y, ait tous ses
termes positifs.

s entiers

En appliquant les mémes raisonnemens 3 1’équation dérivée

'z =0, on en conclura aussi que les caractéres de la réalité
de ses racines, sont que la seconde équation dérivée F'z — 0 ait
toutes. ses racines réelles, et que I’équation en y résultante de
Pélimination de @, par le moyen de celle-ci et de I’équation
F'x x F"x =y, ait tous ses termes positifs , et ainsi de suite.

Donc enfin, pour avoir tous les caractéres de la réalité des racines
de I’équation Fx =0, on fera 1°. y = Fa % F'z, et on élimi-
nera &, au moyen de I'équation F'x = o0; on awura la premiére
€quation en y.

2% On fera y =Fa x F’x, et on éliminera, z, au moyen
de I’équation 'z = o; on aura la seconde équation. en y.

3°. On fera y = F'z x F"xz, et on éliminera:zjiau moyen
3 J
de 'équation F'z =0 ; on, aura;la troisitme équation en yi et
ainsi de suite.

Ces €quations”en y seront au 'nombre de 72 = 1, si I'équation
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primitive Fo=o0 est du degré m, parce que la m*=e fonction
dérivée de Fx sera constante, et ne contiendra plus x.

10. Cela posé, les caractéresde la'réalitédes racines de Péquation
Fz =0, se réduiront i ce que tovs les termes de ces différentes
¢quations en ¥ soient positifs , c’est-a-dire du méme signe que le
premier dans chaque équation.

Or il est aisé de voir que I’équation Fa — o &tant du degré m,
les fonctions dérivées F'z, F'x » etc. seront successivement des
degrés m — 1, m— 2, etc. et que les équations en ¥ seront aussi
de ces mémes degrés ; elles fourniront, par conséquent, chacune
autant de conditions; de sorte que le nombre total des conditions
S€ra m == 1 =4 m — 2 =~ m ~— 3 -}~ etc. on 1 ~+ 2 4 3 - etc.

_m(m—1)
+m—-—-1__——-—;—.

Nousavons déjava, chap, V (n° 28 ), qu’on peut déduireles carac-~
teres de laréalité de toutesles racinesd’une €quationde son équation
des différences , laquelle doit avoir pour cela-tous ses termes al-
ternativement positifs et négatifs; ce qui donne autant de condi-
tions quily a d’unités dansle*degré de celte équation ; de sorte
que 7z étant le degré de ’dquation proposée , rﬂ%;ll sera le

nombre des. conditions, nécessaires pour la réalité de toutes les
racines. Ainsi les deux méthodes donnent.le méme nombre de
conditions ; ce qui est d’autant plus remarquable , que, dans les
équations du troisiéme ef du quatridme degré , les conditions de
la réalité des racines sont réductibles & un moindre nombre, comme
on I’a va dans le chap. cité (art. 111 ).

Mais la'méthode précédente a cet avantage, que les conditions
trouvées pour la réalité des racines des équations d’un’degré quel-
conque , peuvent. servir pour tous les .degrés plus élevés; .ce qui
n’a pas lieu a Pégard de celles qui résultent des équations des
différences. Ainsi on pourrait facilement construire des tables qui
contiendraient successivement les caractéres de la réalitd de toutes
les racines, en comr_ﬁ_enc;-ant par, ’équation du second /degré., et
remontant successivement aux équations plus élevées. 513

11. Pour donner un essai de ces tables , nous commencerons par
la fonction la plus simple de =, qui‘est' 2 ou'1 /), ‘que néus dé-
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signerons par X, et nous remonterons successivement aux forc-
tions primitives, que nous désignerons par X , X, , X , etc, en-
sorte que X sera la fonction dérivée de X, , X la fonction dérivée
de X,, et ainsi de suite. Nous aurous ainsi, en maltipliant ces
fonctions par les nombres 2, 3, 4, etc. pour éviter les fractions,
et ajoutant successivement les constantes A , B, C, etc.

X  {
X, x -+ A
32X, x* +2Ax + B
2.3X, =2 +3A2*+ 5Bxr 4 C
2.3.4XV= 2* 4+ 4Ax' 4 6Bx* 4 4Cx 4+ D

elc.

Maintenant , pour 1'équation du second degré ,

a* +2Ax ~+ B =0,

on fera y = 2XX, —= 2* 4+ 2 Az + B, et on éliminera =z,
au moyen de P’équation X' = o0, ou x + A = 0, on aura
I’équation en y

¥y + A*— B =o.
Donc A* — B > o sera la condition de la réalité des racines

de I’équation proposée.
Pour I’équation du troisitme degré,

-

24+ 3Az2* 4 3Bx 4 C=o0,
on aura d’abord la condition précédente ; ensuite on fera
y = 2.3X X, ; savoir,
y=(z 4+ A)(z* 4+ 3Ax* -+ 3Bz 4 C)
= xt 4 AP H+3(A*+B)ax*+ (3AB+ C) 2+ AC,

et on' éliminera x, au moyen de Péquation X, = o, ou
z* 4 2A =z 4 B = 0; on trouvera cette équation du second

degré
¥+ 2(Ac — &)y 4 a’B —2abA + b ='o,
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en faisant pour abréger

a=2A'— 3AB 4 C
b= AB — 2B* 4 AC;
ainsi on aura de plus ces denx conditions
Aa — b >0, aB —2abA -+ b* > o.
Pour I'équaiion du quatritme degré
xt 4= 4Ax* + 6Bx® 4 4Cx D = o,
on aura d’abord les trois conditions précédenteés; ensuite on fera
y=(x*+2Az+B) (2*+ 4A2°+ 6Bx*+ 4 Cax+ D),

et éliminant x, au moyen de I¥quation X', = o, on
@’ 4+ 3Ax* 4 3Bx + C=0, on aura nine équation en ¥ du
troisieme degré, qui, étant représentée pary® - My*~-Ny P =o,
donnera de plus Ies trois conditions

M0 a5 0. 0. B "o

et ainsi de suite.

12. Au festé, nois ne devons pas oublier wine tibs:belle consé-
quence que De Gua ‘a' tirée de sa théérie ; voici én qum elle
consiste.

8i, dans Péquation Fx = o, on substitue z <~ 7 & fa pldce
de x, on &, par la formule du développement des forcfions! Id
transformee

Fcz—f—F—;- —}-E-‘E "—{— z+etc.+z"“=o,‘
dont on peut faire dispavaitre un terme queleonqueé , centenant,
par exemple , la puissance z*, en déterminant & deé maniére que
I'on ait e = 0. Or, nous verions de voir que si toutes les
racines de P'équation Fa = o ;sont toutes réelles, les valeurs de
Fr—iz et F"*'2 sont nécessairemerit de signes contraires pour
toutes- les valeurs de @ qui résultent de Véquation Frz = o;
donc aussi les valeurs dec F»='a et dé F*+'g seront de signes
contraires pour toutes les valeurs de a résultantes de: I’équation




168 ; NOTE YILIL

F'a = 0. D'ol il s’ensuit que si on fait évanouir un terme quel-
conque de la transformée en z, les deux termes voisins auront
nécessairement des signes différens, si la proposée a toutes ses
racines réelles; par conséquent, elle aura des racines imaginaires,
si les termes voisins de celui qui disparait ont les mémes signes,
et de 13 on peut conclure aussi que toute équation & qui il manque
des termes, a nécessairement des racines imaginaires, si les termes
voisins de ceux qui manquent , sont de méme signe.

13. Lorsque toutes les racines de I’équation sont réelles, on peut
trouver leurs limites sans le secours d’aucune autre équation, par
le moyen de la seule régle de Descartes dont nous avons parlé plus
haut( n°5 ). Car si on diminue, par exemple, toutes lesracines
d’une équation en x de la quantité z, en y substituant z 4~ g 3
la place de «, la transformée en z on en x — @ aura autant de
variations de signes de moins qu’il y aura de racines. positives de
I’équation en 2 qui seront devenues négatives dans I’équation en
x — a; et par conséquent, parmi les racines positives de I'équa-
tion en x, il y en aura autant qui seront moindres que . Donc
si on forme successivement les transformées en @ — 1, £ — 2 A
x—3, etc. chaque variation de signe qui disparaitra d’une trans-
formée & l’autre , par exemple, de la transformée en x — 7 3 1a
transformée en & — 1z — 1, indiquera une racine positive moindre
que 7 -+~ 1, mais non moindre que 7, et par conséquent contenue
entre les limites 7 et 7 ~~ 1. On pourra trouver ainsi successive-
ment les premicres limites des racines positives , et 'on aura de
méme celles des racines négatives par la considération des per-
manences dans les transformées en n -}~ 1, n -} 2, ete.

14. Jignore si cette remarque avait été faiie avantle Mémoire
que M. Budan présenta a I'Institut en 1803, et qu’il vient de
publier avec des augmenta’tions » sous le titre de nouvelle Méthode
pour la Résolution des Equations numériques. 1.’auteur y donne
un moyen simple et élégant de former les coefliciens des trans-
formées ‘en @ — 1, @ — 2, etc.; et appliquant Ta régle de
Descartes a ces transformées’, ‘ainsi qu’d d’autres déduites de
celles-1a , il trouve les limites’ de toutes les racines ‘et leurs va-
leurs aussi ‘approchées quon veut. On' peut’ dire que cet Ouavrage
ne laisse rien & desirer sur la résolution des équations numériques
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dont toutes les racines sont réelles, et il pourrait & cet égard
servir de supplément au présent Traité. :

Au reste, si 'équation avait des racines imaginaires , il pour-
rait disparaitre des variations de signe d’une transformée A Pautre,
sans qu’aucune des racines réelles positives devint négative, comme
on peut s’en convaincre aisément par des exemples; ainsi 1'équa-
tion #° — 22* 4+ 6z — 11 =0 a pour transformée en x — 1,
(T—1) 4= (z—1)*+5 (#—1)—6=o0, oit I'on voit que deux varia-
tions de signe ont disparu; cependant elle n’a pas de racines entre
oeti, :

Mais si le nombre des variations de signes qui disparaissent d’une
transformée & la suivante, était impair, on en pourrait toujours
conclure Pexistence d’une racine réelle positive ; car cela ne peut
arriver, & moins que le dernier terme ne change de signe. Or il
est visible que les derniers termes des transformées en = — 7 »
#® —n — 1, ne sont autre chose que les résultats des substitutions
de et de 7+ 1 4 la place de z dans la proposée , parce que
«ces transformées se réduisent i leur dernier terme » eny faisant
& = n=n -~ 1; ainsi il doit nécessairement ¥y avoir. une
racine réelle entre 7 et 7 -1 (chap.I,n°1), La transformée
en ®—a2 de Iéquation ci-dessus est (x—2)%4- 4 (z—2)*~- 10 (2—2)
~+1==0 qui a une variation de moins que la précédente; aussi y
a-t-il une racine de la proposée entre x et 2.




NOTE IX.

Sur la forme des racines imaginaires.

1 LORSQU’ON eut trouvé les formules générales des racines des
équations du troisitme et du quatriéme degré, on remarqua que
les racines imaginaires de ces équations se réduisaient , comme
celles des équations du second degré, a la forme p~-g /— 1,
p et g étant des quantités réelles; et on fut porté a conclure que
les racines imaginaires de toutes les équations étaient toujours ré-
ductibles & la méme forme. Cependant on ne pouvait pas adopter
cette proposition générale sans démonstration ; et ce n’est qu’apres
plusieurs tentatives qu’on est parvenu & s'en convaincre par des
preuves rigoureuses. Comme ce point de la théorie des équations
est un de ceux dont les Géométres se sont le plus occupés dans
ce siecle, j’ai crn qu'on ne serait pas fdché de trouver ici um
exposé succinct des différentes recherches qu'il a occasionnées.

2, D’ Alembert est le premier qui ait envisagé cette question d’une
maniére générale dans sa Pitce sur les Vents et dans les Mémoires
de I’Académie de Berlin, pour I’année 1746.

Il démontre d’abord qu’une quantité algébrique quelconque ,
composée de tant d'imaginaires qu'on voudra, de la forme
a + by — 1, peut toujours se réduire a la méme forme.
Cela se voit facilement pour les quantités formées par multipli-
cation , division, et élévation aux puissances entieres : on pour-
rait le démontrer en général pour les quantités de la forme
(a—+ &y — 1)"**¥ = par le déveloprement ordinaire du
binome; mais pour avoir des expressions finies , &’ Alembert em-
ploie d'une maniére ingénieuse , la différentiation et Vintégration,
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en faisant varier les quantités @, b, p et ¢ dans 1'équation
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(a+by —1)+Y "' =p4 gy —1

Cependant il faut avouer que I'emploi du calcul différentiel

est peu naturel dans une question comme celle-ci, ol la con-

sidération des infiniment petits ou des fluxions|, est tout-a-fait

étrangere , puisqu’il ne sagit que d’une simple tranformation

algébrique. Mais les fonctions dérivées se présentent, au con-

traire, trés-naturellement, et offrent méme ici un des exemples

les plus propres & montrer 1'usage de leur algorithme dans Palgebre.
3. En effet, si on considére I'équation identique.

(x_l_y‘/__l)m—{-nyi—l:p_}_q \/——I,

en regardant y comme une fonction donnée de x, et p, ¢ comme
des fonctions inconnues de x qu’il s’agit de déterminer, les fonc-
tions dérivées des deux membres formeront encore une équation
identique , on aura ainsi

(r—d=ny/—1) (@+yy/ — 1)tV 1y — 1) =p - —1
divisant cette équation par {’équation primitive, or aura

(mebnp—nyighy (=) P kg —1
Ty U} g e

équation qui sera, par conséquent , encore identique.
Qu'on multiplie le haut et le bas de la fraction du premier

membre, parx — y /' — 1, et le haut et le bas de la fraction.

du second membre, par p — ¢ {/ — 1 pour faire disparaitre le ra-
dical /—1 du dénominateur, et qu'ensuite on compare la partie
réelle du premier membre avec la partie réelle du second, et
V'imaginaire avec 'imaginaire , on aura ces deux équations

m(xtyy)—n(xy—y) __ pp'+qq
xa+yz Pz+qn
2%+ W Ty —y) L
2y Ptq

Qu'on prenne maintenant les fonctions primitives, on aura, en

SCD Lyon 1
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désignant par Z les logarithmes hypexbo]:ques , et par A tang
Pangle de la tangente ,

ml.y(z* =4 y*)—nA tang.é:l.\/(p“-f-q’)-}-K,'
nlq/(:c’—l—-jr’)-%mAtang.%zA tang.‘%r -+ H,

K et H étant deux constantes arbitraires qu’il s'agit de déterminer
conformément a I’équation primitive donnée. Or, en faisant dans
cette équation ¥ =0 et:2==1, on a g==0. et p=1; et ces
suppositions étant introduites dans les équations précédentes,
donnent K =0 et H=o.

Si donc on fait pour plus de simplicité x =z cos z, y=usinz,
ce qui donne

VvV (2 =~ »*), tang.z :{E,

et ensuite ;

FCOSS, ge==rTsins,;
on aura

Ir = mly — nz

s=nlu -+ mz,
et en repassant des logarithmes aux nombres
e Vel i 2

¢ étant le nombre dont le logarithme hyperbolique est 1’unité.

Ainsi r et s, et par conséquent p et g, seront des fonctions
réelles , en supposant x, y, m, n, des quantités réelles.

4. On peut, par ces formules , réduire & une forme réelle I'expres-
sion des racines des équations du troisiéme degré dans le cas
irréductible. Car l'expression générale de x dans I’équation

3 —3Mx — 2N = o

ftant , comme l'on sait,

VN v (N = M) o /(N — ¢ (N = M),
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laquelle, dans le cas irréductible ot M2 > N3, devient
VN VM —N) Ymx) o ) (N — /(M — N 3 —
si on fait dans les formules précédentes
z =N, y=y(M— N), me==i4, n=o,

8____ 2
on aura u=‘/M3,tangz=—v——(—MW———m et de I3

1 z
Posm 0 o 4/ ML $ = 25 donc on aura

VINE (MW —=N*) . 1) = VM(cosgising Y — 1),-

. %z
et la somme des deux radicaux sera 2 VM. cos 3

Or, comme & la méme tangente répondent Jes

V (M — N2)
N
angles z, z 4= 2A, z - 4 A 5 A étant I'angle droit ’expres-

. Z - .
sion 2 VM. cos z aura ces trois valeurs différentes

2 /M.cos 3, EVM-COS(;%—!-%{), 21/M.cos(§+4_5‘3)

qui seront les trois racines de I’équation proposée , et qu’on trouvera
ainsi facilement par les tables trigonométriques.

5. Au reste, il est bon de remarquer que, lorsqu’il ne s’agit que
de radicaux pairs, on peut faire la réduction dont il s’agit par
les simples opérations de l'algebre ordinaire. En effet , soit la
quantité /(@ =5 /' — 1) & réduire ; je considére la quantité

V(“‘f‘b‘/""l)"!- \/(a——-l?‘/_—-x);—-_u,
j’aurai, en élevant au carré

2a 42y (a4 &) = u*,

quantité toujours nécessairement positive en prenant le radical
positivement ; donc.  serg une quantité réelle,
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Je considére ensuite la quantité
Va+by—1)—vV(a—dby—1)=41,
je trouve de méme en carrant
2a—2y (a4 0*)=1,

quantité essentiellement négative; ainsi on aura #* = — N
et £t = V / — 1, V étant une quantité réelle : de la, on aura

V(akby—1)=3i(eE VY —r1)
Considérons de méme la quantité :
J(adby —1)+yY(a—by —1)=5,
on aura en carrant
Viedby—1)+2y/(a+b5)+V(a—bv —1)
=s’=u+z\?(a’+b*),

quantité essentiellement positive , en prenant le radical positive-
ment ; donc s sera une quantité réelle.
Considérons ensuite la quantité

\}(d—l—-b\/-——:)—#/(u—b\/-—x):?‘,

on aura de la méme maniére

Viad+by —1)—ay(a +b)+vV(ia—by —1)
=r=u—2y(a+0),

quantité essentiellement négative; car u*=2a -+ 2/(a"+ 0%
< 4/ (a* 4= &), et par conséquent z < 2 C/(a' =52 )

Donc, faisant 7*=~—S*, on aura r=3S8 ¢/ —1, S étant une
quantité réelle ; done

V(ak by —1)=4i(s=Sy—r1),
et ainsi de suite.
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6. Ces réductions supposées, d'Alembert considére une courbe
quelconque , dont ’ordonnée y soit nulle ou infinie , lorsque
P'abscisse x est nulle ; et il observe que, quelle que pusse étre
I'équation de la courbe , on:peut toujours, lorsque x est tres-
petite , avoir la valeur de y en «; au moyen dn parallélogramme
de Newton, exprimée par une série tres-convergente de la forme

m r z :
¥ = ax* =+ bz’ 4 cx* -4 etc. dans laquelle les exposans de =z
sont imaginés aller en augmentant, et dont on peut toujours
supposer que tous les termes sont réels, en faisant x positive ;
car on peut faire répondre les = positives & la branche ol les y
‘sont réelles. '

En faisant x négative, les termes ol z se trouve élevée i des
puissances fractionnaires dont le dénominateur est un nombre pair,
deviennent imaginaires; et par le théoréme précédent, ils seront
toujours réductibles i la forme p -4 g /— 1, p et g étant des
quantités réeiles. Done toute la série, et par conséquent la valeur
de y, lorsqu’elle devient imaginaire , sera aussi de la méme forme
tant que x sera trés-petite. 2

Maintenant, quelle que soit la valeur de y pour une x quel-
conque, on peut toujours supposer y = p 4 ¢ /— 1, p et q
étant des quantités indéterminées; et comme _cette valeur est
réellement double , & raison du radical /' — 1, les quantités
p et g seront exprimées par deux équations qu’on aura en substi-
tuant p =g/ — 1, an lieu de y, dans I’équation de la courbe,
et égalant séparément a zéro la partie toute réelle de la trans-
formée , et la partie multipliée par \/— 13 ces équations con-
tiendront les quantités p et g mélées ensemble; mais.on pourra,
par les méthodes connues, les changer en deux autres, dont l'une
ne renferme que p et &, et autre g et z.

Or, si y n’est pas toujours de la méme forme p ¢ /— 1, P
et ¢ étant des quantités réelles pour toutes.les valeurs d'x, soit @
la plus grande valeur de @, pour laquelle y sera de cette forme ,
et soit p=&, g==c lorsque @:=a. Supposons x=a 47, et
p=>b+r, g =c-s: en substituant ces valeurs dans les.deux
équations en p et ¢, on aura deux équations, l'une en r et 7,

et I'autre en s et 7, dans lesquelles ; = o donnera r=o, et s=o,
958 ¥
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et qui, par ladémonstration précédente, donneront r et s de la forme
p =g /—1, lorsque i sera trés-petite, sir et s deviennent imagi-
naires. On aura donc alors r = o~ fBy/—1, s=9 - Jy/—1, &,
£,75,d étant des quantités réelles; doncp=~&+4a+4 8 yy/—1,
g=c¢-+ 73—+ Jd y/—1, et par conséquent, y =b—+4a—d 4=
(B ¢+ 9)V/— 15 cest-d-dire de la méme forme p4gy/—1.
Donc a n’est pas, comme on ’a supposé, la plus grande valeur de
qui donne y de cette forme; donc la valeur de y, lorsqu’elle est ima-
ginaire, sera tovjours de cette méme forme, quelle que soit la valeur
de x. :

Cette conclusion générale s’applique naturellement aux équations
d’un degré quelconque, & une seule inconnue ; car nommant y I'in-
connue de ’équation , et supposant le dernier terme égal 4 =, on
aura une équation entre x et y, dans laquelle x=o0 donnera
y=0, et qui sera susceptible de la démonstration précédente. Donc,
quelle que soit la valeur du dernier terme x , celle de y, si elle de-
vient imaginaire, sera de la forme p 4-¢ v'— 1.

I’équation ayant ainsi une racine imaginaire de cette forme, en
aura nécessairement une autre de la forme p —g y/ — 1, puisque le
calcul est le rgéme pour les deux racines, a cause de I’ambiguité du
radical y/— 1; elle aura donc les deux facteurs y —p—qgy/—1;
et y — p -+ g v/— 1, qui forment le facteur double réel y* — apy,
- p* - ¢*, et sera, par conséquent, divisible par ce facteur; ce
qui ’abaissera 4 un degré moindre de deux unités; et on pourra
appliquer 4 cette nouvelle équation les mémes raisonnemens et les
mémes conclusions , et ainsi de suite. X

7. Cette démonstration est incompléete ; car quoique dans une
équation 4 denx indéterminées on puisse toujours exprimer 1'une
des indéterminées par une série de puissances ascendantes de 'autre
indéterminée, il peut arriver queles coefficiens des termes de la série
dépendent enx-mémes d’équations quin’aient point deracinesréelles,
ce qui introduirait dans la série d'autres imaginaires que celles qui
viennent des puissances de l’indéterminée. Mais on peut, sur les
mémes principes , fonder une démonstration plus rigoureuse, et en
méme temps plus générale et plus simple de la maniere snivante.

Soit 1’équation

a" - Ax®—' o= Ba®=* 4 etc, + Y =0,
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que nous représenterons, pour plus de simplicité, par fir- V — 03
J étant une fonction rationnelle et entitre de

Z, qui contient x
dans tous ses termes.

Nous Supposerons que cette équation n’ait
point de racines réelles, parce que si elle en a, on peut les ¢liminer,
en divisant 'équation par les facteurs simples réels qui résultent
de ces racines.

11 est clair que si I’équation proposée n’a pas de racines réelles
dans P'état onr elle est, c’est--dire tant que ses coefficiens ont les
valeurs données, elle Peut en recevoir en changeant seulement la
valeur du dernier terme V; car en prenant une quantité quel-
conque K et faisant V=— fK, I’équation fr — fK —o aurala
racine réelle K. Considérons donc une des racines imaginaires de
Péquation fx 4 V=o, laquelle devienne réelle en faisant varier la
valeur de V, et supposons qu’elle ne demeure imaginaire que tant
que la valeur de V sera entre les limites 4 et b, a étant > bj de
maniére que x ait une valeur réelle « dans 'équation for—d=o, et
une valeur réelle 8 dans ’équation Jx—b=o0, et que cette racine
soit imaginaire dans I’équation Jx~+a—4i=o, et dans I’équation
fr—+b—i=o,iétant une quantité quelconque positive; aussi
petite qu’on voudra. Soit & -+ x la valeur imaginaire de « dans
I'équation fx 4 a7 =0, la fonction Jfx deviendra par la sub-
stitution de a -~z & la place de «, Ja + uf'a 4 %f”a—i— etc,
par la formule connue du développement des fonctions; mais puis-
que a est la racine de I'équation fz 4+ a2 =o, on afada=o,

donc @ = — fa; ainsi 'équation f - ¢ + ; = o deviendra
’ u_;., ” P ey
uf'a - —f'e + ete. + i = o,

Or si le coefficient f’a n’est pas nul, il est évident qu’en
supposant z une quantité trés-petite, a volonté, on pourra tou-

jours avoir z par une série trés-convergente et toute réelle ; car

1 . .
on aura d’abord % = — 7z’ ensuite , en substituant cette pre-

£ gy S
T fa T 5f7a 0 ct ainsi de
suite. Donc  sera une quantité réelle contre Phypotheése.

Il faudra donc, pour que z devienne imaginaire , que l’on ait

a3

miere valeur de #, on avra z —

ST

T e

e

=
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S'a = 0; alors 'équation deviendra
u? 3 1"3 [
-;‘f”d. + wad. + elc: + 7 0,

. r 21
et la premiére valeur approchée de z, sera ‘/_F;’ laquelle
sera réelle ou imaginaire, suivantque f"« sera une quantité négative
ou positive , puisque z est supposée positive.

Si le premier terme de z est réel, il est aisé de voir que tous
les autres le seront aussi; par conséquent, toute la valeur de
sera réelle. 8i le coefficient f"x est positif, le premier terme de

. . - 21 -
sera imaginaire de la forme l/f‘T’_aE Xiy — 1, et les termes

suivans seront réels ou imaginaires de la méme forme , de sorte
que toute la valeur de u sera de la forme p+4-g ' — 1, petg
étant réelles.

Mais si V'on avait en méme temps f'a = o, alors ’équation
devenant

u? w ut .
2—5foe+2.5.4f"a+etc.+z=o

il est ais¢ de voir que la valeur de z serait de nouveau réelle,
4 moins que le terme qui contient #® ne disparaisse s et que fa

3.4 4
ne soit positif; car dans ce cas on awvrait z = |/“}w:’ V—1;

mais par le théoréme démontré plus hant (n° 5) ‘/——-_1 est réductible
a la forme m 4 n /—, m et n étant des quantités réelles ; donc
la premiere valeur, approchée de u, sera de laforme p 4-gy/— 1,
et les termes suivans seront aussi de ]a méme forme , ensorte que
toute la valeur de u sera encore de cette forme, et ainsi de suite,

8. Tl résulte de 1a cette conclusion, que lorsqu'une racine « de
Péquation fx -+ a == o, est dans le passage du réel A I'imaginaire ,
on a, non-seulement fo --a = o0, mais encore f'a=o'et "¢ >0,
et que si f'a =0, on aura de plus f"fa=o0 et f'"a > o, et
ainsi de suite. Or, en faisant for 4 a = Fx, on a fla=F'z,
f'e=F'x, etc. donc, par ce qu’on a vu dans la Note préeédente,
(n° 4) f'a=o sera Ja condition pour que la racine « de I’équation

Jax—-a=9 soit double, fa==0 sera la condition pour que ceite
racine soit triple, ete,
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D’ot il s’ensuit qu’une racine ne peut passer dun réel & Vimagi-
naire , sans devenir double ou quadruple, et en général multiple
d’un ordre pair.

On prouvera de la méme manitre , en faisant x = B -+ u
dans I'dquation fx 4-b — i='0, que la valeur de % ne pourra
devenir imaginaire , & moins que ’on n’ait f'8=o et [ <0,
et si /'8 =o, il faudra de plus que 1’on ait f"B=oet "B < 0,
et ainsi de suite. D’olt 'on conclura que dans le passage de I'ima-
ginaire au réel, la racine devient aussi double, ou quadruple ,
au,.ele,

Cette proposition -n’avait été démontrée jusqu'ici que par ‘Ta
théorie des courbes, ou comme une suite du ‘théoréme sur la
forme des racines imaginaires.

'9. -Maintenant , puisque quand la valeur de V est trés-prés des
limites @ et &, une des racines imaginaires de I'"équation fxr--V=o,
est nécessairement de la forme p -~ ¢ /— 1, si celte racine n’est
‘pas toujours 'de la méme forme pour toutes les valeurs'de V com-
prises entre ces limites, soit ¢ la plus grande valeur de V, pour
laquelle x sera de cette forme ; de manitre que, dans I"équation
Jr+c=o,onaite=m-ny —1, metn étant des quan-
tités réelles, et soit m -~ 7 /— 1 - u la valeur de x, lorsque V.
sera ¢ i, Z étant une quantité positive ‘et trés-petite i volonté.
On aura donc f(m - ny/—1) dc=o, et f(m—4ny/—1 +u)
=+ c 4 i=o0; développant la valeur de z dans la seconde équa-
tion, et retranchant la premitre , on aura

uf' (m—4n V—1)+L§f”(m+n\/-1)+etc.+i=o.
Mais les fonctions dérivées
f(m+ny —1), f'(m~+ny—r1), et

ne contenant que des:puissances de m - 7n'y/ — 1, sont toutes
réductibles & la forme p'4=¢ y/— 1 : ainsi, en prenant.des quan-
tités réelles M, N, P, ‘Q, etc. I’équation précédente deviendra

u(M ANy — 1) Z(P 4 Q i/ —1) o ete, 4 iz= o0

i
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Done la premitre valeur approchée de z sera

z i I(M—Ny—1) .

TMINY —1 M+ N°

et par conséquent de la forme p 4 ¢ y/— 1; et on trouvera que
tous les termes suivans. de la série qu’on peut rendre aussi con-
vergente que l’on veut, en prenant i tres-petite a volonté, seront
aussi de la méme forme; de sorte que la série entiére le sera aussi.
On aura donc, pour une valeur de 7 aussi petite qu’on voudra ,
1u=r-s /—1;donc la valeur dexseram—-r—(n-+s)y—1,
et par conséquent encore de la méme forme p ¢ y/— 1, contre
Phypothése. Donc il n’y a aucune valeur de V intermédiaire entre
les limites a et & , pour laquelle la racine z ne soit pas de cette
méme forme.

Si la fonction f’ (m--n y/— 1) devenait nulle, alors I'équation
en u serait

I;—"Lf”(ﬁr:z+rz\/—1)--I-%j”’(m—{mn\/—1)-{-—etc.-—f--z':o,‘

et on prouverait de méme que la valeur de z serait toujours de
la forme p 4 g y/— 1, et ainsi de suite.

Cette démonstration a ’avantage de pouvoir s’appliquer égale-
ment aux équations qui renfermeraient des fonctions logarith-
miques ou circulaires, et en général a toute équation de la forme
Fx = o, dans laquelle la fonction dérivée F'x sera réductible a
la forme p 4 ¢ y/—1, en faisant x ==m 4 n y/—1; car alors
toutes les autres fonctions dérivées F'x, F"x , etc. seront aussi
réductibles 4 la méme forme ; mais ce détail nowus écarterait trop
de notre objet.

10. Nous venons de démontrer que dans les équations qui-n’ont
que des racines imaginaires, il y en a, au moins , deux de la
forme p ==g¢ y/— 1; on pourra donc trouver les valeurs de p et ¢
par la méthode du chapitre IT (n° 17), et P’équation sera divi-
sible par «* — 2 px -+ p* -+ ¢* =0; aprés la division, elle
ne contiendra plus que les autres racines imaginaires; et en y
appliquant les mémes raisonnemens, on prouvera de méme que
deux de cés racines seront nécessairement de la forme p &= g y/—1;
et ainsi de suite,
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- Quoique la démonstration précédente soit suffisante pour prouver
la vérité de la proposition dont il s’agit, on ne peut disconvenir
quelle ne soit indirecte, et quelle ne laisse encore a desirer une
démonstration tirde uniquement des principes de la chose. En
effet, nous avons déja observé que toute racine imaginaire de
la forme p4-g y/ — 1 suppose le facteur réel du second degré
T — 2px -4 p* 4 ¢* 5 ainsi la question se réduit i prouver que
toute équation est toujours divisible par des facteurs réels du pre-
mier et du second degré ; et comme les €quations d’un degré impair
ont toujours une racine réelle, et sont par conséquent divisibles
par un facteur réel du premier degré, ce qui les rabaisse & un
degré moindre d’une unité , il s’ensuit qu’il suffit de considérer
les équations des degrés pairs.

11, Descartes a trouvé que I'équation du quatrieme degré

Xt = px* + g 4+~ r=o
a ces deux facteurs du second degré

BEyr+L 4 pxl=o,

la quantité y étant donnée par Péquation
¥t apyt o (p* —i47) ¥ — g* = o.

Donc, comme cette équation a son dernier terme négatif, elle
a toujours nécessairement une racine réelle (chap. 1, n° 3); par con-
séquent les deux facteurs seront réels en employant cette racine.

Hudde a considéré ensuite I’équation générale du sixieme degré
dans son Traité de reductione cequationum, imprimé 4 la svite du
Commentaire de:Schoten sur la Géométrie de Descartes ,etil a
trouvé que cette équation est divisible par une équation du second
degré, comme x* — yx 4+ u— o0, dans laguelle le coefficient ¥
est donné par une équation du quinzitme degré, et le coefficient u
est une fonction rationnelle de y. Or I'équation du quinziéme
degré ayant nécessairement une racine réelley il s’ensuit que le
diviseur du second degré pourra toujours étre réel en employant
cette racine ; de sorte que I’équation se trouvant ensuite ahaissée
au quatricme degré, on aura epcore deux autres diviseurs réels.
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Hudde n'a pas été plus loin ; et comme il n'avait trouvé I'éqna-
tion en y duquinziéme degré, qu'en faisant le calcul tout au long,
il 'a ‘dd sentir quil tomberait dans des calculs impraticables par
lear longueur, s'il voulait traiter de méme les équations des degrés
plus élevés.

12. On'trouve a la fin'de ’Algtbre de Saundersorn, imprimée en
1740, apres sa mort, cette remarque’ifportante , que dans le
diviseur 2* — yx 4 w=='0 de T"équation du 'quatriéme degré , le
coefficient y ‘est ‘'donné par une équation ‘du sixieme degré, parce
‘que ce ‘cocfficient devant étre la somme ‘de deux racines de 1'équa-
‘tion du quitrieme degré , Péquation en y doit avoir pour racines
toutes les différentes sommes qu’'dn peut faire des quatre racines
de la proposée , prises deux a deux; ‘et comme “ces ‘cotnbinaisons
sont au nombre de six, ’équation en y doit étre du sixieéme degré,
comme Descartes 'a trouvé ; mais 'auteur n’applique cette re-
marque qu’'a un exemple particulier, et n’en tire d'ailleurs aucune
autre conséquence. _

Le Seur, 'un des commentateurs des principes de Newton ,
a généralisé ce'résultat dans un petit-ouvrage sur le calcul inté-
gral , imprimé & Rome en 1748. 1l prouve par la théorie des
combinaisons, que quand on cherche 3 diviser une équation du
degré m par une gquation d'un degré moindre z, 'les coefficiens
de celle-ci sont donnés nécessairement par des équations du degré

m(m—1) (m—2)...(m—n+41)

T » parce que le diviseur devant

avoir, ce qui ‘est évident, 7 racites communes avec 1'équation
proposée, on peut ‘former atitant de diviseurs différens qu'il y a
de manitres de prendre 7 choses sur m choses ; et de 'la il conclut
que ‘toute ‘équation du degré 4 m 4- 2 est toujours divisible par
un facteur réel du second ‘degré, parce que ce’ facteur dépend
d’une équation qui se tronve d'un-degré impair, et qui aura par
conséquent uhe racine réelle ;' mais oh n’en peiit rien conclure pour
la réalité des diviseurs du second degré des équations dont le degré
est un nombre ‘qui n’est pas de la forme 47 42, parce que ces
diviseurs dépendent alors d’équations de degrés paifs.

13. Euler a approfondi cette théorie dans un Mémoire imprimé
en 1751 dans le Recueil de ceux de I’Académie de Berlin pour
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I'année 1749, et il s’est attaché principalement 4 prouver que.toute
équation d'un degré exprimé par une puissance de 2, est décom.
posable en deux équations, réelles d’un degré. moindre de la
moiti€ ; pour cela, il suppose que I’équation proposée. est privée
de son second terme; ce qui fait que le coefficient du second terme
est le méme avec des signes contraires dans les deux équations
dont elle est le produit; et il trouve; par la théorie des combi-
naisons, que ce coefficient est donné par une équation d’un degré
impairement pair , qui manque de toutes les puissances. impaires,
et dont le dernier terme est le carré d’une fonction des racines de
la proposée , précédé du. signe: moins.

Euler suppose que cette fonction des racines peut toujours étre
déterminée sans irrationnalité par les coefficiens de I’équation
proposée , et il en conclut que son carré est nécessairement ung
quantité positive, et que , par conséquent , I'équation qui déter-
mine le coefficient dont il s’agit a devx racines réelles; il arrive,
en effet, que cela a lien lorsque I’équation proposée n’est. que du
quatriéme degré, comme on le voit par les formules de Pescarres,
rapportées ci-dessus ; mais pour les équations des degrés plus élevés,
il faut une démonstration & priori, qu'Euler n’a point donnée ,
ef qui est méme d’autant plus nécessaire que cette fonction ne
confenant pas toutes les racines de la méme manicres ne . parait
pas déterminable par une fonction rationnelle des coefficiens , qui
sont eux-mémes, comme l'on sait, des fonctions ol foutes les
racines entrent également. %

Luler considére de plus les équations dont. les degrés sont
exprimés par les:nombres 2i, 47, 8, ele.z étant un nombre
impair quelconque, et il trouve qu'elles admettent des diviseurs
réels des degrés 2,-4, 8, etc. parce que. les équations dont ces
diviseurs dépendent sont toutes de degrés impairs; de sorte que,
par ce moyen, toute équation peut se décomposer: en équations
réelles de degrés exprimés par des puissances de 2 3 mais:la difhi-
culté de décomposer ensuite celles-ci , lorsqu’elles .passent le gua-
tritme degré ; reste en son entier dans la théorie d’Euler.

14. On peut éviter cette difficulté, comme Foncenex I’a fait dans
le premier volume des Miscellanea de Turin , imprimé en 1759,
en ne considérant que les diviseurs du second degré. Car soit

SCD Lyon
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a#y le degré de I’équation proposée, » étant un mombre impair
si on cherche & la diviser par une équation du second degré
x*— ux -4V = 0, on trouve par la théorie des combinaisons,
que le coefficient z est déterminé par une équation du degré
oty (afy 1)

2

I'on voit, un nombre impair.

Done si p =1, cette équation sera d’un degré impair et aura
nécessairement une racine réelle ; de sorte que comme le dernier
terme V est exprimé généralement par une fonction rationnelle
de z, I’équation proposée aura un diviseur rationnel du second
degré , et s’abaissera par-l1A 4 un degré moindre de deux unités.

Sip est plus grand que 1'unité , on cherchera & diviser pareil-
lement ’équation en z, par une équation du second degré,

comme u* — tu -~ T = o0; et le coeflicient z sera donné par une
équation du degré

= 2#=Ty (2fy—1)=2¢—'7w, w étant, comme

AT Ta (a2 a— 1)
2

=iaf=2m: (ot T sl a2l 520

p €tant, comme l'on voit, un nombre impair; et le terme T sera
exprimé généralement par une fonction rationnelle de 7.
Donc si p=2, cette équation sera d’un degré impair, et

aura une Yacine réelle ; donc ¢ et T auront des valeurs réelles ,
et I’équation z* — uz 4 T = o donnera pour z une valeur réelle
ou imaginaire de la forme p 4 ¢ y/ — 1. Dans le premier cas,
z et 'V seront des quantités réelles; dans le second’, ces quan-
tités seront imaginaires de la méme forme, puisque V est une
fonction rationnelle 'de ‘z. Mais - I"équation a* — ux +V =o

1 ‘ : . {
donne x :é == l/(% - V) ; 'donc , par la réduction des ra-

dicaux  imaginaires, cette valeur deviendra aussi de la forme
p+gyv—r

Si w est un nombre plus: grand que 2, on continuera le
méme ‘calcul , et on divisera ’équation  en ¢ du degré 20—2p,
par une ¢équation du second degré, comme #*— st~ S=o,
‘on aura, pour la détermination de s, une équation du degré

2 T2 p(aR T ¥ p 1) 3 :
P T : ==24+3 g (gr=3p—y1 ) — 2¢—3¢, o étant,
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commé l'on voit, un nombre impair, et:la quantité S ser

a géné-
ralement une fonction rationnelle de s.

Donc, si u = 3, cette équation étant d'un degré impair,
aura une racine réelle ; donc s et S* aurolit des valeurs réelles;
donc I’équation #* — sz 4= § — o donnera pour ¢ une valeur
réelle ou imaginaire de la forme P =+ g v — 1. Done, dans
Véquation z* — 7y + T = o, les coefficiens 7 et T auront
des valeurs réelles ou imaginaires-de la méme forme ; et de 13
résultera aussi pour z une valeur réelle ou imaginaire de la
méme forme P=¢q v/ —1, comme nous I'avons vu ci-dessus,

t uw? P
parce que u == - == I/(Z — T) 3 done enfin I’équation
&* —uxr + V = o0, donnera aussi pour x une valeur réelle oun
imaginaire de la méme forme.

Si u est plus grand que 3, on continuera le calcul de la méme
manitre, et on parviendra nécessairement & un diviseur, du second
degré, dont les coefliciens seront réels; et de 13, en remontant
successivement aux diviseurs précédens du second degré, on trou-
vera que leurs coefficiens seront réels ou imaginaires de la forme
P+ g V— 1, jusqu'an divisenr 2* — 2z -+ V. = o de I’équation

proposée , lequel donnera aussi pour x une valeur réelle o ima=
ginaire de la méme forme,

Telle est la démonstration donnde par Foncenex ; on voif
quelle est trés-rigoureuse en admettant le principe, que les coef-
ficiens de I’équation du second degré, qui'est un divisenr d'une
équation du degré 7, ne dépendent que d’une seule’ racine d'une

n(n—1) :

. Ce principe est vrai généralement 5
mais. j’ai remarqué, depuis. qu’il. était sujet &-des exceptions qui
pouvaient mettre la démonstration précédente en défaut. Fn effet,
lorsqu’on cherche & rendre un polynome d’un degré quelconque .
divisible par un autre polynome d’un degré moindre 7, soit qulon
fasse la division & la maniére ordinaire , et qu’on égale ensuite;
2 zéro chaque terme du reste, soit qu’on multiplie ce polynome
par un autre du degré m — 2, et qu’on compare le produit terme:
&iterme avee le polynome Proposé ;.on parvient toujours par I'éli-
24

équation du degré
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mination successive , en prenant un des coefficiens du polynome
diviseur pour I'inconnue principale, a déterminer les autres coeffi-
ciens du méme polynome par des fonctions rationnelles de celui-
ci, et ensuite on trouve par les substitutions une équation ot il
n’y a plus que celui-ci d'inconnue, et ol 'inconnue monte au

m(m—i1)(m—2a)....(m—n-1)
T R

degré » comme on l’a dit plus
haut.

15. Mais s’il arrive que cette équationait deux ou plusienrsracines
égales, alors, & moins que les valeurs des autres coefficiens qui
répondent 4 ces racines égales , ne soient aussi égales, ce quin’a
lieu que lorsque le diviseur est lui-méme. un diviseur double ou
triple , etc. il est visible que ces valeurs ne peuvent plus éire
exprimées en fonctions rationnelles de ces mémes racines , mais
qu’elles doivent dépendre elles-mémes d’équations du second , du
troisidme degré, etc. suivant le degré d’égalité des racines. Dans
ce cas, en substituant dans les fonctions rationnelles trouvées ,
une des racines égales, les fonctions deviendront indéterminées
par l'évanouissement simultané du numérateur et du dénomina-
teur; et en revenant sur les éliminations , on se trouvera arrété
a une équation du second ou du troisiéeme , etc. degré, parce que
Péquation a laquelle il faudrait la comparer pour I’abaisser & un
degré moindre, sera identique avec elle. C'est de quoi on peut
se convaincre par le calcul; et nous en donnerons dans la Note
suivante une démonstration générale. Comme la méme difficulté
peut se présenter dans toutes les éliminations, je suis bien aise
d’appeler ’attention du lecteur sur ce point, pour qu'il ne se trouve
point embarrassé dans l'ocecasion.

On voit que cette circonstance peut mettre en défaut la théorie
que nous venons d'exposer sur les diviseurs du second degré; car
lorsque Péquation d’on dépend un des coefliciens a des racines
égales; ’autre coefficient, en employant ces racines, dépendra d’une
équation d’un degré égal au nombre des racines égales, et qui,
par conséquent, si elle n’est pas d’un degré impair , demandera
de nouvelles. combinaisons pour pouvoeir s’assurer qu'elle a une
racine réelle de la forme p 4~ ¢ {/— 1; et si on ne voulait pas
employer ces racines égales, alors, en les éliminant par la
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division , on aurait une équation d'un degré moindre, i la
vérité , mais qui ne serait plus exprimée par un nombre de la
méme forme 2"~ 7 ou 2"=*p, etc.

Si on considére, par exemple, la formule trouvée par Descartes,
pour la résolution des équations du quatridme degré , que nous
avons rapportée ci-dessus, et d’aprés laquelle nous avons conclu
tout de suite que l’équation est toujours décomposable en deux
facteurs réels du second degré, on voit qu’il y a néanmoins un
cas qui eéchappe a cette conclusion; c’est celui oi l'on aurait
g = 0; car alors la réduite en y a deux racines égales y = o,

et en employant ces racines, le terme % du facteur du second
degré devient 3.

On pourrait employer d’autres racines ; mais I'équation en y
étant divisée par y*, devient y* 4 2py* 4 p* — 4r = o, laquelle
étant de nouveau du quatriéme degré , et son dernier terme n’étant
pas essenticllement négatif, la difficulté est ramenée au méme
point. Ce n’est pas que dans ce cas particulier on ne puisse prou~
ver, par ces formules mémes, la réalité des deux facteurs; car
si p* < 4r, le dernier terme de I'équation en y sera négatif; et
par conséquent il y aura deux racines réelles. 8i p* > 47,
alors I’équation proposée devenant, & cause de ¢ = o0, 2t 4 p*z%

=~ 47 = 0, aura les deux facteurs réels, =* -l—gﬁ I/ }14-— r).'

14. Ces difficultés ont occasionné les recherches que j’ai données
sur cette matiere & 1"’Académie de Berlin, en 1772 ; et dans les~
quelles je me suis particulicrement attaché & compléter la théorie
commencée par Euler.

J’ai démontré d’une maniére rigoureuse, que si on veut décom-
poser un polynome du degré 2" en deux polynomes du degré 2™=?;
tels que (7 étant — 27— )

2" 4= Ma"=* o~ Na"=* o4 P 2" —? 4~ ete,
" == Myz"z2 o N2"z? o= Pa"=? -~ ete,
et qu'on fasse

2=a(M—M)+ 5(N=N)+4c(P —P.)+ cte,
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a, b, .c, ele. étant des quantités quelconqueés, on pourra déter-
miner généralement les coefliciens M, N, P, etc. M, , N,, P,, ete,
des deux polynomes par des fonctions rationnelles de u, et que
Pon trouvera pour z une équation d’un degré impairement pair,
n’ayant que des puissances paires de z, dont le dernier terme sera
essentiellement négatif; et a4 cause des arbitraires @ 5B, ¢, etc.
on pourra tonjours faire ensorte que le dernier terme de cette
équation ne soit pas nul, ce qui lui donnerait les deux racines
égales z = o, ni quelle ait d’autres racines ¢égales. De sorte qu’on
sera toujours assuré d’avoir par-la des valeurs réelles pour les
coefliciens dont il s’agit, et par conséquent de pouvoir décom-
poser P’équation du degré 2" en deux du degré 2m—!, et ensuité
chacune de celles-ci en deux, du degré 2m—*, et ainsi de suite,
jusqu’anx équations du second degré.

A D’égard des équations du degré 2™/, / étant un nombre impair,
Euler avait trouvé qu’en employant un diviseur du degré 2™, on
tombe dans une équation d’un degré impair, pour la détermination
d'un quelconque de ses coefliciens; et j’ai remarqué que si elle a
des racines égales , les racines doubles, quadruples, etc. pourront
étre éliminées , parce que DP'équation restante sera encore dun
degré impair , et que les racines triples, quintuples , ete. pourront

étre employées dans la détermination des autres coefliciens, parce
qu’elle dépendra alors d’équations du troisidme , du cinquitme, etc;
degré, qui auront, par conséquent; toujours des racines réelles.

~16. De cettemaniére, la décomposition des équationsen diviseurs
réels-du premiet et du second degré était rigoureusement démon-
trée ; mais Laplace a donné depuis, dans les lecons de PEcole
normale , un moyen plus simple d’établir cette vérité, en partant
de Panalyse employée par Foncenex. Au lien de considérer sim-
plement I'équation qui détermine le coefficient  du diviseur qua-
dratique 2* — ux -+ V = o, il considére 1'équation qui détermine
la quantité z -+ aV , que je désignerai par z,, @ étant un coef-
ficient quelconque. Cette équation sera., par la théorie des com-
binaisons du méme degré que 1'équation en z. Donc, si I'équation
proposée est du degré 2v; v étant impair, I’équation en' z,
sera d'un degré impair, et aura toujonrs une racine réelle; et
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comine on peut donner & ¢ une infinité de valeurs, on aura une
infinité d’équations qui auront toutes une racine réelle. Parmi
ces racines, il y en aura nécessairement plusieurs qui se rappor-
teront au méme diviseur; soient a » B deux de ces racines, et Z5-b
les deux valeurs du coefficient a,onawrau—aV=a,u-5bV=_p;

d’ol L'on tirera les valeurs de z et V', qui seront par conséquent
réelles.

Si I"équation proposée est du degré 4v, v étant un nombre
impair quelconque , I’équation en z, sera du degré aw, = &tant
aussi un nombre impair. Cette équation aura donc, par ce qu’on
vient de démontrer, un diviseur quadratique réel de la forme
U —tu,+T=o, qui donnera pour z, une valeur de la forme
¢+ Ay —1, et en donnant & @ une infinité de valeurs , on
aura une infinité d’équations en x,, dont chacune aura une racine
de la forme & 4 A /— 1; parmi ces racines, il ¥ en aura néces-
$airement deux qui se rapporteront au méme diviseur; en les
désignant par o 4+ A {/— 1 et B+By—r1, et par a, b les
deux valeurs de a qui y répondent, on aura +aV=oa-4-Ay/—1,
L4 bV =P+ By —1; donc u et V seront I'une et 'autre de
la forme p 4 g y/—1; et la valeur de «, tirée de I'équation
" — ux 4V =0, sera encore de la méme forme. Donc toute
équation du degré 4» aura deux racines de la forme p=tgy—i,
et par conséquent un diviseur réel du second degré ; et ainsi de
suite,

Cette démonstration ne laisse rien 3 desirer comme simple dé-
monstration ; mais si on voulait résoudre effectivement une équa-
tion donnée en ses facteurs réels de deux dimensions , il serait
comme impossible de suivre le procédé indiqué par I'analyse que
nous venons d’exposer. Cependant cette résolution est nécessaire
pour trouver les fonctions primitives, ou les intégrales des fonc-
tions rationnelles fractionnaires d’one seule variable, et on la
suppose dans tous les Traités de calcul intégral. Cette raison m’en-
gage & m’arréter encore sur cet objet important, et & en faire le
sujet de la Note suivante.

Tl ol A e i i~
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NOTE X.

. e il o0 I
Sur la décomposition des polynomes dun degré quelconque
en facteurs réels.

f. JE me propose de montrer dans cette Note, comment tout
polynome d’un degré quelconque peut toujours se résoudre en
polynomes réels du premier ou du second degré. En regardant
un polynome comme composé d’autant de facteurs simples qu’il
¥y a d’unités dans I’exposant de la plus haute puissance de I'in-
déterminée, on voit clairement qu’il ne peut avoir pour diviseurs
que des polynomes composés de quelques-uns de ses factenrs;
d’ou il suit d’abord que si m est le degré du polynome donné,
il pourra avoir autant de diviseurs différens du degré n, qu’il
y a de manieres de prendre 7z choses sur 7 choses, c’est-a-dire par
la théorie des combinaisons qu’il y a d’unités dans le nombre

m(m—1)(m—2)....
T8

que nous désignerons par w dans la suite.

Cette seule considération nous met en état de déterminer & priori
les coefficiens du polynome diviseur, sans passer par les opérations
longues et pénibles de la méthode ordinaire, fondée sur la division
ou sur la comparaison du produit de deux polynomes indéterminés,
avec le polynome diviseur, et sur I’élimination successive des in«
connues.

2. Soit en effet le polynome du degré m
" — ax™ 7' o bam Tt — ca™ =3 S ete. Tk B,
que nous supposerons composé des m facteurs simples & =~ a;
x—fB, x—y,x—4, etc.
En développant le produit de ces facteurs, et le comparant
terme & terme avec le polynome donné, on aura, comme l’on
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a=a - f 4 9 - J -~ etc.

b aP 4 ay - By ~ ad -4 etc,
c afy + affd = Brd - ete.
etc.

afByd..

Si on représente de méme par
" — px"T! = g T — rat=d, ete. = u

un diviseur du méme polynome , ce polynome diviseur ne pourra
étre composé que d’'un nombre z des mémes facteurs simples;
alnsi on aura, en ne prenant que 7 quantités parmi les 7z quantités,

a, 8,9, etc.

p=2a + B 4 3 -} etc.
g = af8 4 ay - By - etc.
r afsy -+ etc,

etc.
U = uﬁy......‘

Comme les coefficiens donnés @, &, ¢, ete. i sont des fonctions
des quantités ¢, B, 3, etc. dans lesquelles ces quantités entrent
toutes également , et qui demeurent ainsi invariables, en faisant
entre ces mémes quantités tels échanges que I’on voudra , il s’ensuit
que toute expression rationnelle de ces coefficiens aura la méme
propriété; et comme les coefficiens p, ¢, r, etc. z du diviseur,
sont de semblables fonctions , mais seulement d’un nombre 7 des
quantités &, 3, 3, etc. il est évident que ces coefliciens ne
peuvent pas étre exprimés par des fonctions rationnelles des coef-
ficiens a, b, ¢, etc. maison pourra les faire dépendre chacun
d’une équation dont tous les coefficiens seront des fonctions ra-
tionnelles de ¢, &, ¢, etc. en composant cette équation de maniere
qu'elle ait pour racines toutes les différentes valeurs de p, ou
de ¢, ou de r, etc. dont le nombre estégal au nombre u donne ci-
dessus.

3. Considérons le dernier coefficient % , qui est formé du produit

SCD Lyon 1
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de 7 des quantités o, B, 3, etc., on aura afBy..., Byd...;
ayd. .., etc. pour les-différentes valeurs de #. Donc, si on forme
un polynome du produit de ces facteurs simples

U — aBy.svy = Byl i w=—apd... etc.

ce polynome aura la propriété d'étre une fonction invariable de
e, B, 9. etc. indépendamment de V'indéterminée z ; par consé-
quent, étant développé, tous ses coefficiens auront encore la méme
propriété.
Car soit ce polynome
ut — Aut—1t = Bur—2» — Cyur—3 - etc. =V,
an aura

A=afy... - Byd... 4= a3d... | etc.
B —afy... X Bydil lagd.l. % ayd.
-+ Byd... X ayd... - etc.

etc.

Nooe o fB5-n s Bad, ) e derd U0

oi l'on voit que les coefficiens A, B, C, etc. sont en effet des
fonctions invariables de « 3 3, etc. Or on sait que ces sortes de
fonctions peuvent toujours &tre déterminées par des fonctions ra-
tionnelles des coefficiens a, 2, ¢, ctc. A.

4. Tn effet, on peut d’abord déterminer par ces fonctions la somme
des puissances d’un méme degré des quantités.a, 3, 5, etc. comme
nous I'avons va dans la Note VI ( n° 1 ). Ensuite, si on mul-
tiplie =«*, somme des puissances a*, pai‘ Sa# , somme des puis-
sances a#, le produit Za* X Za* sera égal & Sar+# - Zar B ;
ainsi on aura la somme des termes >3, an moyen de celle des
puissances. On trouvera pareillement

Sarfe X Dy =Sar+1 e o Zar ety e Sar ey

ainsi on aura aussi cette derniére somme en fonctions des sommes
puissances, et ainsi de suite.

:Maintenant il est facile de voir que toute fonction rationnelle
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et invariable des quantités «, 8, 3, etc. ne peut étre formde
que d’une ou plusieurs sommes des formes précédentes; elle pourra
donc toujours étre déterminée en fonetions des coefficiens a; b
c, etc.

C’est 13 un des principes les plus féconds de la théorie des
équations. Newfon, et long - temps avant lui Albert Girard,
avaient donné la mani¢re de déterminer la somme des puissances
des racines d’une équation par des fonctions de ces coefficiens.
Voyez dans l’ouvrage &’ A/bert Girard, intitulé Invention nouvelle
en Algebre, et imprimé & Amsterdam en 1629, I'exemple second
du théoréme second. Euler , dans les Mémoires de I’Académie de
Berlin pour I’année 1748, et Cramer 4 la fin de son Introduction
a I'Analyse des lignes courbes, ont fait voir que 'on pouvait tou-
jours déterminer par les coefficiens d’une équation , les sommes des
produits de ses racines, prises deux a deux, trois & trois, etc. et
€levées & différentes puissances; et P#aring a donné ensuite des
formules générales pour trouver ces sortes de fonctions des racines;
mais dans les cas particuliers, il est peut-étre plus simple d’em-
ployer la méthode indiquée ci-dessus.

5. A Pégard des coefficiens A, B, C, etc. du polynome ; on
pourra les calculer de la maniére suivante.

On commencera par déterminer les sommes des punissances par
ces formules

2

2 a,

Sa’ aZa == 25,

24’ = qZa’~— bZa ~- 3c,
etc.

Ensuite on cherchera les termes némes des séries

Sa=a, Zap=5b, Zaffy=c, ete

2 g 4 ETZ CPEY 2 4 Sab
Zat, 2&’5’:2—-—-——-——-—1 ><2: e . Ez’ﬁ“gﬁzsd"c . :x e +——i, efc.

Sa’ 3 Sad —Sab 343 Fol e Tad 5 Saf L S0
Sad, TP = = : P : Exaﬁsyszﬁzﬁ el % X +_._.__'

etce.

etc.

Ces termes seront les valeurs des sommes ZafBy..., Za’f’...,
Za’fyl. .., etc,

a5 iz

SCD Lyon 1.
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Enfin on aura

A p T P
B AZafy. ... —Zafq?
2 :
b BZafy . ...— ASPa?f 2. . . . Sa’f%]
3

]

etc.

Au reste, il est visible qu'on aura d’abord sans ealcul les valeurs
du premier coefficient A et du dernier V; car le coefficient A
est évidemment égal au coefficient de la punissance z"—* dans le
polynome donné a” —ax"=' 4 etc. Quant au coefficient V , il
est visible qu’il doit &tre de la forme a'@y'dr....=Ah'; et pour
déterminer 1’exposant v , il suffira de considérer que ce coefficient
doit- étre le produit de w quantités, dont chacune est le produit
de n quantités prises parmi les m quantités a, 3, 3, etc. de sorte
que ce coeflicient sera dela dimension nu; donc il faudra que

my = npu, et par conséqu =
%, et pa juent e

Donc, puisque p= : » on aura

(m—1)(m—2) .... (m+n—1)
X i y
et la valeur de V sera A

Ayant ainsi la valeur du dernier coefficient 'V du polynome
en u, on pourra se contenter de calculer directement la premiére
moitié des ceefficiens A, B, C, etc. de ce polynome. Car soient
T, 8, R, etc. les termes qui précedent le dernier 'V, il est facile
de voir qu'on aura

V=

x

1 I
..+5y4‘...+a&yd‘...

Or, si on désigne par () le coeflicient de la puissance x* dans
le pelynome donné ; on aura aussi

--ete,

_(_) 1 1 1
h rxﬁ'y. ; =+ Byd'.. + apd'. ..
(»)

; et par conséquent T — Q%Y

-}~ etc.

h
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Ensuite si on désigne par g, f, ¢, etc. les coefficiens du poly-
nome donné, qui précedent le dernier %; lorsqu’on aura trouvé
Pexpression de B en @, b, ¢, etc. il n'y aura qu'd y changer a

£ =

en _g’;’ beny, cen -Z, etc. pour avoir la valeur de 5

les mémes changemens dans I’expression de C, on aura la valeur

; et faisant

R il :
de v et ainsi de suite.

Ayant ainsi formé le polynome en x, si on le fait égal a zéro,
on aura une équation dont les racines seront af3y..., Byd... ,
ayd'. .., etc. et qui servira, par conséquent, & déterminer la valeur
de u. Il ne restera donc plus qu'a trouver les valeurs de tous les
aunfres coefficiens p, ¢, r, etc. du polynome diviseur,

6. La maniére la plus simple de trouver ces coefficiens est de
faire la division actuelle du polynome a™ — aa™=*--etc. par
le polynome z" — px"='—-etc. &= u , jusqu’a ce qu'on soit par-
venu & un reste dans lequel la plus haute puissance de z soit
moindre que z*; alors en égalant & zéro chacun des termes de
ce reste, pour qu’il devienne nul indépendamment de I’inconnue x,
on aura n équations entre les 7 coefficiens p, ¢, etc. z; et l'on
pourra, généralement parlant, par ces équations, déterminer les
valeurs de p, ¢, ete. en fonctions rationnelles de z. On aurait
ensuite I’équation méme en z, par la substitution de ces valeurs
dans I’dquation restante ; mais comme on ne voit pas de cette
maniére de quel degré devrait étre cette équation finale en z,
qu’on pourrait méme parvenir a une équation en z d’un degré plus
haut qu’elle ne devrait étre,, ce qui est I'inconvénient ordinaire
des méthodes d’élimination , nous avons cru devoir montrer com-
ment on peunt trouver cette équation @ prior:, et s’assurer du degré
précis auquel elle doit monter. ;

Par la méme raison , nouns croyons qu'il est nécessaire d’avoir
une méthode directe pour trouver les expressions des coefficiens
Ps g, etc. en u, et pour étre assuré que ces expressions peuvent
toujours étre rationnelles, excepté les cas particuliers on elles
doivent dépendre d’équations du second ou du troisieme degré,
comme nous ’avons déja observé dans la Note précédente. Voici
donc comment, en supposant I’équation en z, on peut avoir la
valeur des coefficiens p, ¢, etc. en fonctions de #.

SCD Lyon1
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7. Je considére que la quantité x étant indéterminée , on peut
metire x — / a la place de x, tant dans le polynome donné
a™ — ax™~'-etc. que dans le polynome diviseur 2* — px" '~} etc.
Par cette substitution, le premier de ces polynomes deviendra

" — @, X" = b "=t — etc, == A, ,
1 ]
ou 'on aura
a,=a-m

b,=0>0-+ (m—1) ai—l—-T(—mq_—l) e

c,=c+ (m—2)bi -+-——H——~(m_l)2(m_ 2) ais - (™ —;‘)5(’”_ 2) »
etc.

h,=h - gi 4 fi* 4 ei® -}~ ete.
Et le second polynome deviendra pareillement
X" — p, "= g, 2"t — etcl 2=
en faisant

p.=p-+ni
g =g+ (n—1)pi =15

b () gi - EEN Dy 2 ()
efc.

U, = 1~ ti -+ si* =4 ri* - etc,

Drott 'on peut conclure que si, dans ’équation en z;

wt — Aur—1 4 Bur—2 — etc. =V = o,

dans laquelle les coefficiens A, B, C, etc. sont des fonctions de
a,b,c, etc. b, on substitue respectivement @5 b., c,, ete. B
au lien de ces quantités , la valeur de z deviendra celle de Uis
quelle que soit la valeur de 7; de sorte qu’en développant les termes
suivant les puissances de 7, il faudra que la somme de tous les
termes multipliés par nne méme puissance soit nulle; ce qui don-
nera plusieurs équations , dont chacune servira A déterminer um
des coefliciens 7, s, r, etc, par les précédens,
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8. On pourra méme trouver directement ces équations par lalgo-

rithme des fonctions dérivées. En effet, si on met partout Z3la
m

place de 7, il s’ensuivra des formules précédentes que o devenant
a1, b deviendra

m -
m

m(m—1) .
TR

b + =7 A T

2 m?
¢ deviendra

C,_l_mn;lgbi_l_(m—-l) (m—z)ai,+m(m—1)(m_2) 3

am?* 2.3m? )

efc.

et enfin © deviendra
u i i D et
m m? md a

Donc si on regarde, ce qui est permis, les coefficiens 4, c, etc.
hetz, comme des fonctions de @, et quon se rappelle que
devenant a - Z, toute fonction de @, comme z, devient

2 = 5]
u—[—-zu’-—]—gu”-{-ﬁu'”—-l—etc.
on pourra svupposer

" m—1 i m(m—1) » ;
Y = —a, b Ry b 03
7 (m—1) (m—2)
= b, c ot = ety el L0

m (m—1) (m—2) s
— = » €T=0;

=m.—5 d' = (m_zzngm'_z) b’

c
m ]

(m—1) (m-—-O) (m—73)

m?

. m (m——1) (m=2) (m —3) (m— 4)
o mh 2
dics=9"

etc,

a, d":
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et il n’y aura plas qu’a prendre les fonctions dérivées successives
de I'’équation en #, et y faire les substitutions précédentes,

9. Supposons
Z =u — Aur—1' == Bur—2 — Cur—3 o= ete. == V3

ensorte que Z = o soit ’équation qui déférmine la valeur de u:
cette quantité Z étant regardée comme une fonction de a , donnera
les équations dérivées Z'=o0, Z" =0, Z"= o0, etc.

Mais pour pouvoir distinguer dans ces fonctions ce qui est di
en particulier aux variations des quantités @, b, ¢, ete. & et u,
nous représenterons en général, 4 I'imitation de ce qu’on pratique

dans le calcul qu'on appelle aux différences partielles, par (%;),

(%;) , (%) » etc. les coefficiens des fonctions dérivées o, &', ¢, etc.
dans l’expression de Z’, par (g—,), (%}), (371) » ete. les coef-
ficiens des quantités ™, a'4’, 5", etc. dans I’expression générale
de Z', et ainsi de suite , et nous appellerons de méme ces fonc-
tions, fonctions dérivées partielles. Lorsque @ est la variable prin-
cipale dont les antres sont ou peuvent étre censées fonctions, on
aura @’ = 1 ; mais nous retiendrons la lettre a’ sous les lettres
Z', 17, etc. pour représenter en général les coefficiens des termes
de Z', 72, etc. qui contiendraient cette méme lettre , si @ était
une fonction quelconque d’une autre variable principale , et pour
dénoter par conséquent ce qui est dii en particulier & la variation
de a.

Cette notation est plus nette et plus expressive que celle que
j’ai employée dans la Théorie des fonctions , en placant les accens
différemment , suivant les différentes variables auxquelles ils se
rapportent. En la substituant & celle-ci, I’algorithme des fonctions
dérivées conservera tous les avantages du calcul différentiel , et
anra de plus celui de débarrasser les formules de cette multitude
de d qui les alongent et les défigurent méme en quelque facon,
et qui rappellent continuellement & Vesprit I'idée fausse des infi-
niment petits.

10, On aura ainsi, en regardant toutes les quantités a, b, ¢, etc.
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hy et u, comme les fonctions quelconques d’une variable pri-
mitive ,

2= (2)¢ + @) 0+ @)+ ot ),

et prenant de nouveau les fonctions dérivées,

@+ G0+ @) e+ ot G,
e g,;) @* =2 (QE;-) a'd - (ZZ;:) b’ -} etc.
2 (—Zi) a'v - 2(55;—,) by =2 (%) c'u = ete.

7
=)

et ainsi de suite.
Donc , faisant " = 1, " = o, etc. VY —
3 3 3

m(m-—1 me— 2
b"=-£_2__)., " =0, ¢ = b, etc. comme nous
m m

Pavons trouvé ci-dessus, on aura les équations Z'=0, Z'=o0, etc,
savoir :

) +(5) ek B 200+ G o
%;)ma:-g—{—(z—: (e a-}-etc.-{-( )

m2

me

O+ = G G v
i (( ) i (b{a"’) T —1 a ( z' m—3 g -I- etc. )
~- (Z” E — -+ ete.=o0,
et ainsi de suite , dans lesquelles les fonctions dérivées partielles
( ) ) efc. ( ,Z) (GZ;,) » etc. seront des fonctions connues
de ¢, b, ¢, etc. u.

La premiére équation donnera donc la valeur de ¢; la seconde
donnera celle de s, etc. en fonctions rationnelles de a, b , Cyete, u;
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; ; S e A
4 moins que la fonction partielle (?) ne devienne nulle, auquel

cas la premitre équation ne contiendra plus 7, ni la seconde s, etc.
Dans ce cas donc il faudra tirer la valeur de # de la seconde
équation, dans laquelle # monte au second degré; et les équations
suivantes donneront alors les valeurs de s, 7, etc. par des fonc-
4 = . : 3 Z" : .
tions rationnelles. Si la fonction dérivée (E’") était aussi nulle ,

2

I’équation en # ne serait plus que du premier degré, et si la somme
des fonctions qui multiplient # était nulle en méme temps, la
quantité ¢ disparaitrait ‘de la seconde équation; et ne pourrait
étre donnée que par la troisieme on elle monterait au troisieme
degré, et ainsi de suite.

Or la fonction partielle (%—,) est égale a
pubt =t — (pp—1) Aur—? = (pp— 2) Bur—3 — ete,

2 - Z' ik
et I'on voit que I’équation (-;) = o renferme les conditions de

1’égalité des racines de I’équation Z == o. D’ou il s’ensuit que si
cette équation a des racines égales, et qu’on emploie pour la vae

: 3 7
leur de z une des racines égales , ensorte que la fonction (?) de-

vienne nulle en méme temps que Z, le coeflicient # dépendra
alors d’une équation particuliére du second degré; et par consé-
quent tous les autres coefficiens du polynome diviseur , dépendrdht
4 la fois de la résolution des deux équations en u et en 7. Nous
en avons donné ci - dessus ( Note précéd.n® 13 ) la raison méta-
physique tirée de I'égalité des racines; mais on en a ici une dé-
monstration analytique rigoureuse.

11, Une conséquence essentielle qui résulte des formules précé-

- Z
dentes, c’est que tant que lafonction ('J) ne sera pas nulle , tous les

coefficiens #, s, 7, etc. seront donnés en fonctions rationnelles
du coefficient z ; et que par conséquent cela aura lieu nécessai-
rement lorsque I’équation en z n’aura point de racines égales, ou
dn moins lorsquon n’emploiera pour la valeur de z que des racines
inégales. '
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Or jlobserve qu'on peut toujours faire ensorte que Iéquation
en & w’ait point de racines égales , & moins que le polynome donné
nait lui-méme des facteurs égaux ; mais comme on peut éliminer
ces facteurs d’avance, on pourra toujours supposer que tous les
facteurs de ces polynomes soient inégaux. Cela supposé , si on sub-

stitue dans ce polynome # — A a la place de x, ce qui changera
les coefficiens ay b, c,en

a- mx
m(m—1),,.
Z)—l—(m—-l)ah—{-—-g—i\,

efc.

les facteurs du nouvean polynome seront & —a — A, x — B—2,

X — 7y — A, elc. c'est-a-dire que les quantités a, 8, 5, etc. devien-
dront a2, B2, 542, etc. '

Donc les racines de 'équation en #, seront tous les produits
possibles de 7 quantités, prises parmi les m quantités o - A,
B =42, y4-2A, etc.; et il est clair que deux de ces racines ne
sauraient devenir égales, & moins quil n’y ait deux produits égaux
de deux ou de plusieurs dimensions, formés de ces différentes
quantités, Or il est visible que tant que les quantités o, 8, 5, ete.
seront inégales, on pourra toujours prendre A de maniére qu’au-
cune de ces égalités n’ait lieu; car en considérant , par exemple,
“les  deux produits (a—-A) (B4-2A)et (5 4 2) (&' =+ 2) qui se
réduisent & A* - (e == B) A 4 aff et A2 (7y+d)r~434d, on
voit quil n’y a qu’une valeur de A qui puisse les rendre égaux;
et que, par conséquent, il y en aura une infinité qui les rendront
inégaux, & moins que l'on ait a 4 B=1 4 & et aff=17d", ce
,qui emporterait I’égalité de « et 8 avec 3 et d'.

Il en seva de méme des produits d’un plus grand nombre de
facteurs; d’oti 'on conclura en général, qu’on peut toujours trans-
_former ainsi le polyneme primitif, en augmentant I'indéterminée 2
~d’une quantité quelconque , de manicre que ¢
“en u n’ait point de racines égales.

quation résultante

12. Nous venons de donner, non-seulement la maniere , mais les
-formules mémes par lesquelles on. pourra toujours trouver un di-
26
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viseur d’un degré # d'un polynome quelconque du degré m; et
nous venons de démontrer par ces formules, que ce diviseur ne
dépendra que de la racine d’une seule équation du degré p, savoir:

m(m—1)(m—2)........(m—n<+1)
S B ST =

11 suffira donc que cette équation ait une racine reelle pour
que tout le diviseur soit réel ; mais comme il n’y a, en général
que les équations d'un degré impair, ou celles des degrés pairs
dont le dernier terme est négatif, o 'on soit assuré de I'existence
d’une racine réelle, il reste 4 voir quelles sont les valeurs de =
pour lesquelles ces conditions auront nécessairement lieu.

Quel que soit le nombre m, il est toujours réductible a la

forme 2°

aura

Z, i ¢tant un nombre impair, Supposons 7 = 2f, om

ofi (gpi——l)(zei——z)

s

Dby 10 . o J T«

ou bien, ce qui est la méme chose,

M =

et divisant le haut et le bas de cette fraction par 2%, ensunite
par 2, par 4, etc. on aura

i(zfi_..l)(gf—l e DAY (291-__'29_}_])
(Bf _1)(2?—1 _1)._.-'.‘-(2§' ___2'5’+1)

o=

Comme le numérateur et le dénominateur ne contiennent plus
que des facteurs impairs, et que le nombre u est par sa nature
un nombre entier , il s'ensnit qu’il sera nécessairement impair.

Il s’ensuit de 14 que tout polynome du degré 2°i peut foujours
avoir un diviseur réel du degré 2f; le polynome restant aprés
la division sera donc aussi réel, et du degré 2°i— 2°, savoir

2?(2' == 1 ); OF, i ¢tant un nombre impair, 7 — 1 sera un nombre




NOTE X. 203

pair, qu'on pourra représenter par 2°%, % étant un nombre im-
pair; le polynome restant sera alors du degré 2Tk, et aura un

. e a . - .
diviseur réel du degré 2 +“, et ainsi de suite. Comme de cette
maniére tout nombre entier peut étre décomposé en un certain

nombre de puissances croissantes de 2, comme 2 -=2° 17 - etec.
il sensuit que tout polynome d’un degré quelconque , pourra éltre
décomposé immédiatement en un pareil nombre de polynomes,
dont les degrés seront ces mémes puissances de deux.

15. I reste donc & considérer les polynomes dont le degré est une
simple puissance de 2. Faisons dans la formule générale de u,

O —

[ 1
mea, etinp— = —2 , On aura

2?(2‘-’_

w o=
Tyl SeEg
ey & (2f —a' T )

Ll b
B Lk oac 5 : R P g B

divisant le haut et le bas de cette fraction par 2", et ensuite
par 2, par 4, elc. on aura

2(2f —1)(fTl—1) —of 7 1)
(oF T = Iy 2T ——r) RN aeaf T

'LL=

Comme tous les facteurs du numérateur, & 'exception du pre-
mier 2, ainsi que tous les facteurs du dénominateur, sont im-
pairs, il s’ensuit que le nombre wx, qui est d’ailleurs entier par
sa nature, sera nécessairement de la forme 2 7, 7 étant un nombre
impair.

Considérons dans ce cas I’équation en z ; puisque le degré du
diviseur est la moitié de celui du polynome, les racines de cette
équation seront tous les produits qu’on pourra faire en prenant
la moitié des quantités «, @, 5, etc. dont le nombre est supposé
pair. Donc, puisque le produit de toutes ces quantités est 72, il s'en-

h : R :
suit que si % est un de ces produits partiels, ~ en sera un autre;
par conséquent si z est une racine de I'équation dont il s’agit,
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h v .
;l en sera une anssi. Celtte équation devra donc demeurer la méme,

: h
en y substituant — pour .

Par cette substitution , I'équation

e A Bl T Cu“_a—g- ete.—Ru*4-Su*—Tu--V=0

deviendra, aprés avoir été multipliée par z" et. divisée par V ,
k,’)’,'—'g

AT u— h*S % i A RR
% Y

v ¥ + e u‘u—g—l- ete, —
W—2p 1A iz
v U — pea s L + v = %3 =

C
ud

et comme ces deux équations doivent étre identiques, on aura

AT h*S PR
A:T, B:i.v—, C=T’ etCo',

. . v L L
mais on a trouvé ci-dessus V=~%, v étant = % =% ( & cause

de m=2n, dans le cas présent ), et par conséquent impair 3
on aura donc

T=AF"', S=BF " R = C]zy—g, ete. 3

ainsi, en substituant 2v & la place de u, et réunissant les termes

également éloignés du milien , I’équation en z deviendra

N S Ly el o Pt e RN L S el L R
— C (u”w5 — ]f—g u©*) -+ ete. = o0, '

14. Cest la forme générale des équations qu'on appelle réci-
proques , et qui peuvent toujours s'abaisser & un degré moindre
de la moitié.

En effet, en divisant ’équation précédente par «', elle devient

v y—1 y—2
U+EP_I__A<R1J—1 h >+B< +ﬁv____5

V—-'l

Al s S pEad
-——G( —l—-———)-i—etc..-— .
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~Or, si I'on faity::u—[— —, on auray’—'u -+- —I—-ﬂh,
¥ +;7j ~+3h (u -} f—i) , et ainsi de suite ; d’ou l’on tire

u ~- = ¥

w-t S =y =—2h

h
u
h®
u?
h?
us

2t -

etc.

=y = 3hy,

et en général

A

h
.7’A+—,\=J’A—'7"h.7
17

A-—2+ A(A: 3) h’j’,\—
A(A—4) (r—5) A—6
T Y21 B hy

~- etc,

Par le moyen de ces substitutions, I’équation en z du degré 2y,

sera transformée en une équation en y du degre v, laquelle sera
de la forme :

7= (AT A (B)Y T = (€))7 o ete =0,
en supposar;t
(A) = A
(B)=B — sk
(C)=C — (v —1)KA
(D) =D — (r —a)hB 4 20— jo,

elc.

Ensuite on aura z en y par I'équation 2 — uy -/ = o, laquelle

donne u=y+t/(y”—4fz).
f 2

15. Maintenant on voit qu'il suffit de calculer directement la moi-
ti¢ des coefficiens A, B, C, etc. de ’équation en 2 ; ce’qui réduit
le calcul & la moitié, On voit de plus que, comme I'exposant & est,

it
SCD Lyon1
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dans le cas présent, un nombre de la forme 27, 7 étant impair,
le nombre v sera impair , et par conséquent 1’équation en y aura
nécessairement une racine reelle.

Mais pour que z ait une valeur réelle, il ne suffit-pas que la va-
leur de y soit réelle , il fant encore que y* — 4% soit une quantité
positive. Cela aura lien nécessairement lorsque %z a une valeur

négative ; ainsi, dans ce cas, le polyneme du degré 2° est réso-
luble par deux polynomes réels du dégré 2°™'. Mais si / a une
valeur positive , il faut voir de plus si 'on peut toujours trouver

une valeur réelle de y, telle que y* > 44.

16. Soit donc y* — 4/ = z; qu’on substitue dansl’équation pré-
cédente en ¥, Y (z-+4h) an lien de y, on aura, aprés avoir
fait disparaitre le radical par P’élévation au carré, et ordonné
les termes suivant les puissances de z; une équation en z du méme
degré v, laquelle ‘aura nécessairement une racine réelle positive ,
si son dernier terme est négatif. Or, puisque » est un nombre
impair, le dernier terme sera le prodnit de toutes les racines,
pris négativement; ainsi la question est réduite & voir si le pro-
duit de toutes les valeurs de z est essentiellement une quantité
positive , en supposant que la valeur de / soit positive.

Puisque z=y* — 4k, et y=u+§, on aura

2 2
z..—.::uz—}.-%-—zh:(u-—«é),

u

Or z a pour valeurs tous les produits qu’on peut faire en mul-
P P q P
tipliant ensemble une moitié des quantités a, 8, 7, efc. et nous

avons déja v que les valenrs de - sont les produits quon peut
faire en multipliant ensemble 'autre moitié des mémes quantités;
donc les valeurs de u — ;—’i seront deux a deux égales et de signe

contraire ; par conséquent, on aura toutes les valeurs différentes
de z, en.ne donnant 3 uz que la moitié de ses différentes valeurs;
et il est évident. que le produit de toutes les valeurs de z sera

.. . A k - ’
;munf, si le produit des valeurs de w — ~ peut étre exprimé par
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une fonction rationnelle des coefficiens a, &, ¢, ete. car alors son
carré sera nécessairement une quantité positive,

S’il n’y a, par exemple , que quatre quantités «, 8, v, &', toutes
les valeurs de u seront af3, ay , ad, By, B, 9d'; et les valeurs

: f .
différentes de z — 7 seront, en ne premant pour % que les trois
premiers produits ,

af —od, ay — B, ad — fy;

le produit de ces trois quantités étant développé, donne

@*Byd + afyd 4+ afyr’d 4 aByds
—“ﬂ-"@‘}g e e ﬁaﬁltj\s el g }’J\’ Fir ﬁa}'nd\s’

olt I'on voit que la partie positive et la partie négative sont chacune
une fonction invariable et symétrique des quantitds 2B, 3,
et peuvent par conséquent étre déterminées en a, b, c, d, par les
formules données plus haut.

17. Généralisons maintenant ce résultat, et désignons, pour plus
de simplicité par P, Q, R, etc. les différens produits qu'on peut
faire avec la moitié des quantités e, 8,7, etc. en y conservant
une méme quantité «, et par p, ¢, 7, etc. les produits formés par
P’autre moitié des mémes quantités, et que j’appellerai réciproques.
Je vais d’abord prouver que les quantités P, Q, R, etc. et leurs
réciproques p, ¢, r, etc. renferment toutes les valeurs de z. On
a vu que ces valeurs sont au nombre de u; et & cause de m = an,

on a

—2n(2n—1) (an—2)....(
oo i P

Drun autre c6té, comme on asupposé que les quantités P, Q, R, ete.
contiennent toutes une méme quantité «, il est clair que le nombre
de ces quantités, sera celui de.tous les produits qu'on peut faire
en ne prenant que 7 — 1 quantités sur 272 — 1 quantités; done
ce nombre sera

(ean—1) (2n—2)
B 2.
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Donc, puisque les quantités P, Q, R, etc. forment 1a moitié de
tountes les valeurs de u, il suflira de prendre ces quantités pour les
différentes valeurs de u, et p, ¢, r, etc. seront les valeurs corres-

pondautes de -. Ainsi il s’agira de voir si le produit

(B p) () £ B )

est nécessairement une fonction invariable des quantités a, 2, 7, etc.
auquel cas on sera assuré qu’il peut étre déterminé rationnellement
par les coefliciens @, b, ¢, etc. D’abord il est évident que toutes
les permutations qu’on peut faire des quantités 2, 3, d', etc. enire
elles, ne peuvent que faire échanger les produits P, Q, R, etc.
entre eux, et leurs réciproques en méme temps entre eux ; de sorte

quil ne peut résulter de ces permutations aucun changement dans
le produit

(P—p)(Q—g)(R=7)

Considérons ensnite les échanges de « contre chacune des autres
quantités B, 3, d', ete. il est clair qu'en échangeant « en f3;
celles des quantités P, Q, R, etc. qui contiennent a la fois «
et 3, ne souffriront aucun changement; il 8’y aura donc a consi-
dérer que celles qui ne contiennent point 3. Or si P, par exemple,
ne contient point @', comme les deux produits P et p contiennent
toutes les quantités o, B, 5, ete. il s’ensuit que [3 sera contenu
dans p, et ainsi des autres; donc, par I’échange de « en f3, toute
quantité P ou Q, etc. qui ne contiendra point 2, ne pourra que
devenir une des réciproques p, ¢, 7, etc. qui sont supposées ne
point contenir o ; ainsi P deviendra par exemple ¢, et alors Q
deviendra nécessairement p ; donc P — p deviendra ¢ — Q , et
en méme temps Q —¢g deviendra p — P. D’ol l'on peut conclure
en général que, par les échanges de a en 8, 3, etc. les différens
facteurs P — p; Q — ¢, R—r, etc. ne pourront que rester les
mémes , on s'échanger entre eux , en changeant en méme temps
de signe. '

18. Maintenant, si oncherche le nombre des produits P, Q, R, etc.
qui ne changeront pas par 1'échange de o en 8, ce nombre sera
celui de ces prodpits oix « et 3 se trouveront ensemble ; donc le
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nombre fotal des quantités o, 2, 5, etc. étant 2 7, et le nombre
de ces quantités dans chaque produit étant 7°, le nombre des pro-
duits qui contiendront A la fois « et 3, sera celui des combinaisons
quon peut faire en prenant 7 — 2 choses sur 27 — a2 choses ;
par conséquent, il sera exprimé par

(2n—02) (an—35)
1

comparant ce nombre au nombre » donné ci-dessus

» il pourra
v (n—1)
< -

: :
Xpr f ——
S‘exprimer par ————

Or le nombre total des quantités P, Q, R, etc. étant v, 81 on

v(n— 1) ny
en retranche le nombre Ton—y > O aura ——— pour le nombre

des produits P, Q, R, etc. qui, par I’échange de « en 8, se
changeront dans les réciproques p, g, 7, etec.; par conséquent ,
ce nombre sera aussi celui des facteurs P—p, Q—q¢,R—r, ete.
qui changeront de signe par ce méme échange ; donc , tant que 7
sera un nombre pair, et par conséquent tant que I’exposant m =27
sera une puissance de 2, plus grande que 2, le nombre dont il
s’agit sera nécessairement pair; d'od il s’ensuit que le produit
total

(P—p)(Q—9g) (R —

ne changera pas par I'échange de « en 8; il en sera de méme des
autres échanges de o en 3, J', ete.

Donc enfin ce produit sera une fonction invariable des quantités
a, B, 3, etc. et pourra par conséquent se déterminer par des
fonctions rationnelles des coefficiens s e, etel du polynome
donné. Donc I’équation en z du degré impair » aura son dernier
terme négatif’; par conséquent, elle aura nécessairement une racine
réelle positive (n° 3).

e b\
En prenant cette valeur positive pour z, on-aura (u —_— ﬂ)

=2z,
et de 1a u—-§= v/ z 3 donc W —uyz—h=o, etdel}

R e = l/(% - 71.) » quantité nécessairement réelle,
puisque nous avons supposé la quantité 2 positive (n° 16).

<7

SCD Lyon 1.



210 N“O TE Xs

Done tout polynome du degré 2%, tant que p sera plus grand
que l'unité, soit que son dernier terme % soit positif ou négatif,
pourra se décomposer par les formules que nous venons de donner,

r e -
en deux polynomes réels du degré 2 , et I'on aura ces deux
polynomes a la fois , en employant la double valeur de z. Donc,
en combinant cette conclusion avec celle qu'on a trouvée plus

haut pour tout polynome du degré 2%/, on en conclura générale-
ment qu’on peut toujours résoudre un polynome quelconque en
facteurs réels du premier ou du second degré.

19. En appliquant aux équations la théorie que nous venons de
donner sur la décomposition des polynomes , on voit qu’on peut
toujours résoudre une équation quelconque en deux autres équations
dont les coefliciens seront réels , et ne dépendront que de la racine
réelle d'une équation de degré impair. Or nous avons vu dans le
chapitre I, qu’on peut tout de suite avoir les limites de cette racine
par la simple substitution des nombres naturels 1, 2, 3, etc.; et
qu’ayant les premicres limites, il est facile de les resserrer & vo-
lonté par des substitutions successives.

Ainsi, lorsque I’équation donnée est numérique, on pourra la
résoudre en deux autres équations numériques dont les coefficiens
seront aussi exacts qu’on voudra ; et résolvant de méme chacune
de celles-ci en deux autres, on parviendra enfin i des équations
du premier ou du second degré, lesquelles donneront par conséquent
immédiatement toutes les racines réelles et les racines imaginaires.
De 12 nait une méthode de résoudre les équations numériques, qui
est indépendante de la recherche des limites entre racines, et qui &
cet égard parait avoir quelque avantage sur la méthode des deux pre-
miers chapitres. Mais d’un autre c6té, il faut avouer qu’a exception
de quelques cas particuliers ot la décomposition de 1’égnation est
facile , cette méthode sera impraticable par la multiplicité et la
longueur des opérations qu’elle peut demander. Aussi I’objet principal
de cette Note est de prouver a priori la possibilité de la décompo-
sition des polynomes et des équations en facteurs réels du premier
degré; objet quin’avait pas encore été rempli d’une maniere directe
et complete,
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Sur les formules d’approximation pour les racines des
équations.

NOUS avons vu dans la Note V que la méthode de Newion
consiste A substituer successivement dans une méme fonction les
résultats des substitutions précédentes; ainsi on peut réduire en
formule le résultat général de ces substitutions.

1. Soit Fxr = o I’équation proposée , et a la premiére valeur
approchée d’une des racines de cette équation. Suivant la méthode
dont il s’agit , on substitue a - p & la place de x, et on rejette

dans le développement tous les termes ol p monte au-dessus de
la premiere dimension.

Par le développement connu des fonctions, I'équation Fx=o
devient

Fa+pF’cz+’§F'a+etc.=o,

et se réduit d'abord & Fa—pF'a=o, d'olil'on tire p =— .
Ainsi @ étant une premiére approximation, si on fait b= — Fa

Fa’
on aura @ -+ b pour seconde approximation , et celle-ci donnera

" . ‘ L F(a-+b) e
de la méme manitre, en faisant ¢ = Flatb)’ la troisitme

approximation a=-b - c, et ainsi de suite; de sorte que la valeur
de x sera esprimée par la série @ + b - ¢ + d +-etc.

Or je remarque que si b est une quantité trés-pelite, la valeur
de F (¢ - D) sera trés-petite de 'ordre de 5*; car le développement

de F (a =+ b) donne Fa +- bF'a - %:: F’a - etc. mais b =— % ;

SCD Lyon 1




212 NOT XX L

: i . F b
donc F (a4 2) = 5 F’a 4- ete. donc, puisque ¢ = — F’E%L_L%’
la valeur de ¢ sera aussi du méme ordre B2, De méme, la valeur
de F (a6 c) sera de I'ordre de ¢*, et par conséquent de ’ordre

de &*; car F(a+b+-¢) =F(a-+b) + cF'(a-+b) + S F (am-B)+-ete.;
mais ¢ = — }1;,%2"'"—53-; donc F(a4-b4-4-c) :;F”(a - b) -+ etc.

donc, puisque d = — f—?%%, la valeur de & sera aussi

de l'ordre de 44, et ainsi de suite. D’ot il s'ensujt que si Fa est
une quantité tres-petite , 'erreur des approximations a - &,

a~tb—~4c, a+b~+c—+d, etc. sera respectivement de ’ordre
des puissances 2, 4, 8, etc. de Fa.

Ce procédé est assez commode pour le caleul arithmétique ;
mais si on voulait avoir une formule ordonnée suivant les puis=-

sances de Fa, il faudrait développer successivement toutes les
fonctions, et ’on trouverait la série

Fa (Fa)*F’a (Fa)*F"a (Fa)® (F'a)*
e e oy 23t - a(Fey - T efc

2. On pourrait parvenir plus simplement & cette formule, en
tirant la valeur de p de I’équation

Fa 4 pFa p—;nF'a -+ 2‘% F*a 4 ete. = o

on aurait d’abord

Fa 1

e i - SO TSI f_’_g nJ _P_-qI m
p=— F,a(gfa-}-z.aFa-i-etc.),

et on substituerait successivement les premiéres valeurs de p dans

les termes qui contiennent p*, p*, ete.; ou bien on. supposerait
tout de suite

p = AFa 4 B(Fa)* 4~ C(Fa)? - etec.

et égalant 4 zéro les termes affectés des mémes puissances de Fg;
ce qui donnera les équations nécessaires pour la détermination
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des coefficiens indéterminés A, B, C, etc., on aurait
AFa -1 = o
BFa % Fla'= o
CFa - ABF’a - %35 F'a = o

eie,

’

d'oeu l'on tire

T 2(Fa)
(F'a)? F’a
2(Fa)® + 2.3 (Fa)t?

etc.
et la série

@ -+ AFa -~ B (Fa)* -~ C (Fa)® - ete.

sera la méme que celle qu’on a trouvée ci-dessus; ce qui prouve
la correspondance des deux méthodes.

3. Mais on peut arriver i ce méme résultat par une autre mé-
thode plus directe et plus analytique.

La question consiste & tirer de 'équation F (e+p)=o0, la
valeur de p en série. Je puis regarder la quantité ¢ comme une
fonction d’une autre quantité o, et supposer que a devienne a - p
lorsque o deviendra « -}~ 7, Ainsi, comme @ devient en général

A * g . 2
a4 iad + ~ a’ - = a” - etc. lorsque « devient « ~+Z, on
aura

P
2.

. i
p:za'-—!—;a'—l—-—-—gfz”’—[—etc.

comme la quantité @ est indéterminée , je puis la supposer
telle que 'on ait Fa =« ; alors F (@~ p) deviendra o -7,
et I’équation F (¢ ~+ p) = o sera « —~+ i = o, laquelle donne
sur-le-champ i = —a =-—Ta; de sorte qu'on aura

p=—aFa 4 %- (Fa)* — % (Fa)® 4~ etc.

et il n’y aura plus qu'a trouver les valeurs de o, o, @7 ctc,

SCD Lyon 1.
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Ces valeurs sont les fonctions dérivées de @, considérée comme
fonction de « ; or on a pour la détermination de « en a, I’équation
Fa = a; donc, si on prend les fonctions derivées relativement
34 «, en regardant a comme la fonction de «, et qu'on désigne ,
comme on I’a fait plus haut, par Fa, F'z, F’a, etc. les fonctions
dérivées de Fa , par rapport 3 a, les fonctions dérivées de Fa,
F'a, etc. relativement 2 a, seront a'F'a, a'F'a, etc. et 1’équation
Fa = a donnera d’abord ¢F'e= 1, d’ou l'on tire

d = =
Fa?

et de 13, en prenant toujours les fonctions dérivées, et substituant
cette valeur de a’,
» aFla . Fla: -
(Fa) (Fa)’

Rl adF"a 3d (F'a)*
@’ = — t7ay + (Fa)t

s, Fa 5(F'a)?

s (Fa) i (Fa)® ?

etc.

a

On peut trouver ainsi successivement les valeurs de o', o',
a”, etc. par lesquelles on pourra continuer aussi loin qu’on voudra
la série

a — aFa -+ f‘;;', (Fa)* — f—; (Fa)® + ete.

qui exprime la valeur de x dans I’équation Fx = o, et l’on aura
la méme série qu’on a trouvée ci-dessus.

Cette formule revient a celle qu’ Euler a donnée dans la seconde
partie du Calcul différentiel ( chapitre IX, art. 234 ). On voit par
un Mémoire de Courtivron, imprimé dans le volume de ’Académie
des Sciences , pour Pannée 1744, qu Euler I’avait déja trouvée a
cette &poque , et on peut la compter au nombre des découvertes
dont il a enrichi ’Analyse. Par la maniére dont nous venons de
la présenter, elle est une suite naturelle de la théorie du déve-
loppement des fonctions.

4. Nous allons maintenant rapprocher les résultats précédens de
ceux quon peut tirer des séries récurrentes. Suivant la méthode
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exposée dans la Note VI, pour avoir la valeur de la racine p de
I'équation

Fa-{-pF’a-—}-Eg F”a—l—i—%F"’a—{-—ctc.:o,

il faudrait développer la fraction

2
Fa+ pl'a + % F’a 4~ etc.

Fa- pFa-+ P;— F'a 4+ etc.

suivant les puissances de p; et si T p* et V p«+1t sont deux
s i )

termes consécutifs , on aura v pour la valeur de p, d’autant plus

exacte que ces termes seront plus ¢loignés du commencement de

la série.

Dans la méthode ordinaire, les termes d’une série récurrente
se forment les uns d’apres les auntres; mais cette maniére , qui est
trés-commode pour le calcul arithmétique , n’est pas propre &
donner le terme général en fonction des coefliciens de 1’équation,
et il faut pour cela employer d’antres moyens.

5. Pour donner & cette recherche toute la généralité dont elle
est susceptible , je vais considérer la fonction fractionnaire

ox :
u—x 4+ fx?

dans laquelle je suppose que fx et ¢x sont des fonctions de =,
telles que

fx= A + Bx + Cz* 4+ Dz* -} etc.
px =P -+ Qx 4 Rx* + Sa* -} etc.

Je représente par
(0) 4= (1) = = (2) =* ~ (3) 2* ~= etc,

la série résultante du deéveloppement de cette foanction, suivant

les puissances de x , et je me propose de trouver I’expression du
coefficient (#) de la puissance x".

SCD Lyon 1
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Je commence par développer la fonction snivant les puissances
de fx; j’ai la série

¢z __ _oxf= 2 oxfx

S Fe s P -+ ete.

je considere chacune de ces fractions en particulier , et je cherche
les termes multipliés par * qui peuvent résulter de leur dévelop-
pement.

. 1 -
La fraction L s donne la série connue

1 x 2 =
e el et

laquelle étant multipliée par la série représentée par ¢ #, don-
nera les termes suivans affectés de =*,

S
( rr.—|-1+Qu n—l+F+etc-)xn,

ot il faut remarquer que, comme les puissances de % dans les
dénominateurs vont en diminuant, il faudra s’arréter an terme
divisé par .

6. Or, si on considére la fonetion @2, quon la divise par 2",
qu’ensuite on y change x en %, et qu’on ne retienne que les termes
divisés par z ou par des puissances de u, il est aisé de veir quon
aura de cette maniére la série qui multiplie 2". Donc la partie

multipliée par x", provenant de la fonction utp_xx, pourra étre

L

w - .
représentée par ﬁH a*, en ayant soin de ne retenir que les termes

ou

de — qui auront z an dénominateur.

De la méme maniére, si on cherchait la partie multipliée par 27,

><f

provenant du développement de la fraction & ‘u » suivant les

> Ju
puissances -de a, on trouverait ,H_Jf , en ne retenant dans
gu X fu

= = que les termes qui auraient une puissance de z au déno-

P L . . -
minateur. La quantité ufilft est donc identique avec le coefli-
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cient de =" dans le développement de Qj—fg; donc I'identit&

subsistera encore entre les fonctions dérivées relativement & u;

d’ol1 il suit que la fonction dérivée de 2% >f% » que nous déno-

n+1

terons par (ﬁf—ﬂﬂf— » sera égale au coefficient de 2" dans le dé-

veloppement de la fonction dérivée de $2>2J% Xf relativement & «.

Or, comme z ne se trouve ici que dans le dénominateur , et

- . 1
que la fonction dérivée de — — est — -(—l—j; » on en conclura

tout de suite que (22 ,?f_,f ) x" sera la partie du développement

de — ?j Xf)a. » qui sera multipliée par ", en ayant toujours soin

de ne retenir dans la fonction Lf-‘(:f:— » €t par conséquent aussi

danssa fonction dérivée(° ufi;f u) » que les termes qui auront

au dénominateur.

On trouvera pareﬂlement que la partie multipliée par z" dans

o
le développement de 2 f —————, suivant les puissances de x, sera

. L > . s
exprimée par f—;z-_,,—];—, en ne refenant que les termes divisés par

des puissances de ;. donc l'identité subsistera encore a I’égard
des fonctions deuvees relativement & u; par conséquent, la seconde

u X fu

fonction dérivée de — 55— relativement 3 u, que nous déno-

X fru

terons par (‘p =1 ) » sera encore égale a la partie affectée de 2~

dansle développement de la seconde fonction dérivée de ffi :: Mais

2 . : 1 1
la prermére fonction dérivée de e étant — T la seconde

Cn=r

5 J
donc, divisant par 2, on en conclura que (£ {;’f

sera (i— )31

sera la partie du développement de (—f-j- qui sera mult;phee

74
par x*, en ayant soin de ne retenir dans la valeur de (% ,‘{L. )

que les termes divisés par des puissances de u.
a8
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On prouvera par une analyse semblable, qu'en dénotant par

@ufsu

w
= H_l) la troisitme fonction dérivée , relativement & =, de
2.0UL

{7 ufsu

la fonetion —==-==, et supposant qu'on ne retienne dans cette
fonction que les termes divisés par des puissances de z, la partie

3
multipliée par 2" dans le développement de — Ei—ff;f;; » suivant

- sty oufuv- N\ . S
les puissances de x, sera exprimée par ( — == ) #"; et alnsi
de suite.

Donc, en rassemblant toutes ces parties, on aura l'expres-
sion compléte du terme (72)z" du développement de la quantité

-—-—--_—--—‘\—e -3 - -
S ;-i—f , suivant les puissances positives de z , et ’on trouvera

ou X fu Qu L X fru
(n) = 2% - (LY o (28
ou X f*u
= algmat ) = ete.

en ayant soin de ne retenir que les fermes qui contxendront des
puissances négatives de .

7. Nous remarquerons ici qu’en prenant encore successivement
les fonctions dérivées snivant z, on pourra avoir les expressions des
termes multipliés par " dans les développemens de

L1p ==
de (u_zx+fx)3, de (u—.z::-ffr yi» et Ainsi en désignant par

(n)', (n)', (n)", etc. les fonctions dérivées, premiére, seconde, etc,
de la fonction de u désignée par (#), on aura

’ r "

pour les expressions des termes dont il s’agit. Et pour avoir Ies

valeurs de (n)', (n), etc. il n’y aura qu’a ajouter un trait, deux
r

traits, etc. aux fonctions fjl - (%‘:—I}”) , ete, de lexpression

de’(m).

8, Supposons qu’on demande le terme général (#) x* de la série




NOTE XI.
provenant du développement de la fraction rationnelle

P4 Qx

a?
1 — 2% cos @ - x*

219

On divisera d’abord le numérateur et le dénominateur par 2cos w

r = b | x ’
pour le réduire & la forme — %~ | ¢t I'on aura par la com-
U—x 4 fr
paraison avec cette fprmule

Pxr =
P

Donc on aura

Pu =
fu
o ==

ou Qu—»
T T “scosw 2 COS w
ou < fu Pu=r+r Qu-ha
Felasl (2cosm)? (2cosw)?
ou Xf:zu e Py—n+3 Qu—l+4
gt T (dcesw)d (2 cos @)™

etc.

En prenant les fonctions dérivées par rapport & z, on aura
* donc

(¢u><fu) SR G n e ) Bt (e B) Qunb

Rk " (2 cosw)® (2cosw)®

rpuxfu) Lat (n—3) (n—2a) Pu—n+:
aghtr J o 2 (2cos@)’
+ (n-—-—4) (n.._S) Qu""""-

a2 (2cos50)® .

efc.
et par conséquent

— =0 ——y j — A1
(n)_P(2 _ (n 1) u +(n J(n=—2)u ——etc.)

(2cosw)? 2 (2cosw)?

—ag )y "+ (n—4) (:1.—5)1.',_"'"“__ .
e O e T i)

(2 cosw)? ; 2(2cosw)’ .
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220 N T B X1,

ot il n’y a plus qu’a substituer au lieu de u sa valeur
On aura ainsi

() =P ((2 cosw)'—(n—1)(2cosw) —* - ("—5?2(11—-

(n—5) (112—-54) (n—3) (2 e a,)n-f-_s - etc,)

-+ Q ((2 C08 )"~ = (r2—2) (2 COS )" =} M——-—-—M(z cosw)*—8

__ (n—6) (’:‘55) tn—4) (2cosw)"—% - ‘3“")

2) (2 cosw)*—*

otr il suffira de ne point admettre de puissances négatives de
cos .

Cette expression peut se réduire a une forme plus simple, en

employant les formules connues des sinus des angles multiples;
on aura par ce moyen

Sm(n-}-l)w smnca
(n) =P sin o 5 Q sin @
comme Euler I’a trouvé dans 'Introduction a I’Analyse; mais la
formule précédente a I’avantage de pouvoir s’appliquer facilement
aux fractions dont le dénominateur est une puissance quelconque.
En effet, pour la fractien

P+ Qx

(1—axcosw Fx*)’

on aura le terme général — (n) x"; et en prenant la fonction

dérivée de lexpression de (7) en z, on aura

. (n41)um"? (n—1)nu—n"—r
— () =P ( 2.cos® 13 (2 cosa)?
(n—3)(n—2)(n—1)u""
st 2 (2cose)’ e glo

-+ Q(nu""— (n—g){n—1JuT"

2.C08 @ (=2 cosw)?

G B (=B sy uTrt: ctcs) 3

2 (2cosw)®




N.OA E"XE

. 1 . .
et substituant pour z sa valeur ——, il viendra
2C08 w

-——(n)’:P((n-—[— 1) (2cosw)*' —(n—1)n(2cosw ) *
+ (72-—3) (n_z) (n'—' 1) (acosw)n-—s o StC.)

ﬂ—Q(n(: cos ) = (n— 2)(n— 1) (2cosw)=?

o (n—4) (”:3) (B el (2 cosw) =+ — etc.)

ou il suffira aussi de pousser les séries jusqu’aux puissances né-
gatives de cos w exclusivement , et ainsi de snite,

9. Reprenons maintenant I'expression générale en z, du coef-

ficient (n) de la puissance x” dans le développement de la fraction
px

=g ol et supposons que le numérateur ¢ x soit 1 — /', ou
plus généralement , de la forme L x (1 — f'x), c’est-a-dire qu’il
soit le produit de la fonction dérivée du dénominateur prise né-
gativement, par une fonction < 2, qu’on suppose entiére et ra-

tionnelle. Faisant la substitution de <} % (1 — f’% ) au lien de 9,
on aura :

ul’l+1 un+l

du X fu ) . (LuXfufuy

2u"+‘ —:?7;7*) ot etc.
'uin-a“—_:fu)’ n+xf = (uu+1)f“$
2w‘+1 zu) = u‘i‘flfuf u -+ (un+1) £e

et par conséquent

(308 = (e pup) -+ (Y 2.

Donc faisant ces réductions, et supposant pour abréger

__-\Luxf'u afh ¢u><fu)’_ -;L_uxfuf'u)r

un+a

o J_u

uu+1 >
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232 NOTE XI.
on aura
(n) = Yu + ¥u x fu+ (E2LeY
e (*uxf ) -1 ete.

Cette formule servira a trouver l'expression du terme général
(n) z* dans le développement de la fraction

dr (1 — flao)
u—x—+fx

suivant les puissances de x, pourvu qu’on ait soin de ne retenir
que les termes ‘qui contiennent des puissances négatives de u.

10. Supposons <, =1, et par conséquent Vu =1, ¥u =u""",
on aura le terme général (n) " du développement de la fraction

1 —f'x : ; ‘
i g Orsia, 3, 3, efc. sont les racines de I’équation

4 — x -+ fxr=o0, ce terme sera exprimé par

1 1 1
(d,"+1 + g1 + )/,,+l + etC.) ;r"’

par ce qu'on a démontré dans la Note VI (n* 6). On aura donc,
en mettant 7 4 la place de z -1,

1 1 1

- — 3 - ;; ~- etc.

(e (XA
((uﬂ) stu) -~ etc.

en ne conservant que les puissances négatives de .
11, Soit proposée, par exemple, I’équation
a—bz ~+ cx* = o,
dont les racines soient a et f3.
On la divisera par b pour la réduire a la forme u — x - f,

ca”
on aura fx = -, et la valeur de « sera ‘—; Donc changeant x




NOTE XI. 5%

cu?
en x dans fx, on aura fu = ——, et de 1a

(amsyiox fum o BEEIEL (G8aY o0 fr s ORI

nclymntd

(=Y, o< Sfdu — —p— ete. Done

nc :z(n-—-%)c

1 1
i ' e — e b B ol § [ -n;-f-g
a B K Yo Sy L igeas

n(n—>5) (n—4)c
e 2.3 b°

u—r"*? - etc.
. 1 . a . -
ol il n’y aura plus qu'a faire u = ;. On aura ainsi

R O IO Ol

n(n—5)(n—4) ¢ n—3
= BT (E) = etc.

en continuant cetle série tant qu’il y aura de puissances positives

de é

a

Si on voulait avoir la somme des puissances positives a” 4 3",
il n’y aurait qu’a considérer 1’équation ax® =~ ba - ¢ =0, qui

. 1
résulte de I’équation précédente, en changeant x en =, et dont
les racines sont par conséquent - et ;; ce qui ne demande que
a "B

de changer @ en c et ¢ en a. On aura donc ainsi

oo = (B = F () 2 ()

n({n—25) (n-—-4)03 3
e AL (:) - etc.

12, En général, «, B, 9, etc. étant les racines de 1'équation

U —x - fxr = o,

on aura

u—az A fr=k(z—a)(z—p)(z—12).

k étant le coeflicient de la plus haute puissance de x; et prenant
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les fonctions dérivées de part et d’autre ,

—14 fla=k(z—PB)(x—9)... +k(z—a)(z—1)...
G k(x—a)(z—p5)....

donc divisant et changeant les signes

T—F® .k 1 1
L—ax—fx = a—x e B—x g = y—3x

et multipliant par 4 =

Jx(1—f'= iLas x
Yuix+-f}£)=u—x+ﬁ—m+ - +0tc'

Or L étant supposé une fonction entiére de =, on pourra la
diviser par « — @, jusqu’a ce qu’on parvienne 4 un reste sans x;
et, pour trouver tout de suite ce reste, il n’y a qu’a considérer
que b o — Lz est divisible par « — 2, le quotient étant une
fonction entiére de x et @, que nous désignerons par F (x, a); et
si </ x est une fonction du degré m, il est clair que F (z, a) sera du
degrém——1. Donc, puisque Ja —Ja=F (z,a) X (2 —2), on aura

Jx=-a—~F (x - ’Lx _—-—F(r,

On trouvera de méme —— — = F (a:, 8) + B —, et ainsi des

-~ etc.

B
autres. Donc, en faisant ees substitutions, on aura

%__,_f—g)-"—'F(w a) —F(z,B)=F(x, ) — etc.

+ g Y +“”+etc-

En résolvant ces fractions en séries, on aura aprés les m —
premiers termes, dans lesquels se fondent les parties entidres
—F (z,a), —F(x, ), etc. une suite réguliére dont le terme
général sera

2
SE e+ L A ete ) 2t

de sorte qu'on aura, 72 étant > m,

(n) “—ﬂ‘-f-—l + fn-f—j + rl---l. + elc'




NOTE""XT. 225

Clest le terme général de la suite récurrente qui résulte de la

fraction %%Q, exprimé par les racines a, 8, 3, etc. de

Péquation z — ~+fr = o.

En comparant cette expression avec ’expression générale de (n)

€n u trouvée ci-dessus, et mettant pour plus de simplicité » a
la place de 7 + 1, on aura

Lo LB 4y :

r 2, ’
=Yu-4 ¥Yu x fu -{—(‘P——-———-uffu)
r L)
+ (LY - ete
2.3
ou ¥u = %Fu » et ot on ne doit retenir que les termes qui contien<

dront des puissances négatives de u.

13. Supposons maintenant que I’exposant 7 soit infiniment grand,
ensorte que le terme (2)z"=*, auquel il répond dans la série
récurrente, soit pris & une tres-grande distance de l'origine , on

- w
pourra alors regarder la fonction ¥ z =— tn comme ne contenanf

que des puissances négatives de z, et méme toutes les fonctions
Yu X fu, ¥u x f'u, etc. comme ne contenant aussi que des
puissances négatives de z ; du moins cette supposition sera d’autant
plus exacte , que le nombre 7 sera plus grand. Dans cette hypo-
thése, il n’y aura aucun terme 3 rejeter dans l'expression de (1) y
et on pourra regarder la série

Yu - Yu X fu (i—"u—ffi)’ = (iju—ﬁfﬁ)'-[— etc.

comme allant & Vinfini sans aucune interrnption.

14. Or j'observe que toute série de cette forme » dans laquelle
¥u et fu sont des fonctions quelconques de uz; a cette propriété
remarquable, que si on la multiplie par une autre série semblable ,
dans laquelle, 3 la place de la fonction ¥, il y ait une aufra
fonction quelconque Iz, Ie produit sera encore une série sems
blable, mais dans laquelle il Yy aura ¥ > Tu & la place de L u,

29
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326 NOTE XI.
in effet, si on multiplie ensemble les denx séries

Yu -+ Yu ><fu+(“><f”' + (* "Xf”) + ete.
Hu-{—lluxju—i—('”y“‘)ﬁ— l'lu><f u) s

on a }
Y Iu

4 (Yu x Du+ Nu x ¥Yu)fu
—-i—“l’ (”Af”)-[_*}"uxﬂuxfu
+ﬂ (-\,z.r,}(ful’.
etc.

Or¥n x Mu 4Ty x ¥u= (Yo x Nu),
(n“?-f:-g) S 7 X fru~++MWu X fuf'u,
(':if LLXLE..) a1 é Py xf,u + N xfltf'lt,

2
donc la série devient

Yux Tu-4 (Yu x Ou) fu
i (¥Yux e+ 2¥ 0 X Wu + e X ¥u) fu
- (Yu X Ou) fuf'u -+ ete.

savoir

Yu X Mu 4 (Yu x Ou) fu + ((+u><:ru’)ff-u)’ -+ etc.

Ft on trouvera la méme chose en poussant la multiplication plus
loin , et en rassemblant les termes qui contienneat les mémes
dimensions de fu ,

Donc en général si on denote par (¥ ) la série qui contient
1a fonction ¥, et de méme par (T« ) la série qm contient ITu,
la fonction fu demeurant la méme dans les deux séries, il résulte
‘d‘e ce que nous venons de trouver que l'on aura

(Fu) % (Fu) = (Yu x Tu);
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et comme cetfe propriété a lien quelles que soient les fonctions
¥u et Iu, sion fait ¥u X MMu=®u, on aura (Vo) X (Mu)=(0.);

done (Mu) = Eii;, mais Tz = ;E donc E:”; ("’_“)

c’est-a-dire que le quotient de deux séries semblables , lesquelles
contiennent deux fonctions différentes, ®u et ¥, sera aussi

une semblable fonclion qui contiendra le quotient de ces mémes
fonctions.

15. Donc si on prend deux nombres trés-grands, n et n4-r,

dont la différence r soit vm nombre quelconque positif ou négalif,
le quotient de la quantité

ey 3" fo ‘“’ + ete.
divisée par la quantité

18
‘j;:r + ﬁ-‘i+r + -+r + etc.

sera exprimée par la série infinie

Yu -+ Yu x fu -4 (‘-’-“%&> -+ efes

. . 114 ¥ » A
en faisant Yu = "L—:" divisé par —",!’—_;:, y c'est-a-dire ¥u = u'.
/) L

D’un avotre ¢bté, r étant un nombre infiniment grand, il est

visible que les deux quantités ci-dessus se réduisent a leurs premiers
Lo dea - :
termes, = et —5, @ étant la plus petite des racines 2, (8, 3, ete.

Donc le quotient de la premitre des quantités, divisée par la
seconde, se réduira & «"; d’ou résulte ce théoréme trés-remarquable.
8i a est la plus petite des racines de I'équation

u— x4 fxr=o0,

on qura
o =u + (u) X fu -+ ((u') =k ) G ((uf) Y. ) + efe.

r étant un nombre quélcongue positif ou négatif.
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Ainsi on a par cette formule , non-seulement la racine & ; mais
encore une puissance quelconque de la méme racine.

16. Si on fait maintenant » = n, 7 étant un nombre fini quel-
conque, et qu'on compare cette formule avec celle qu’on a donnée

plus haut pour la valeur de - — 12" -{- - -~ etc. on en tirera la
eonclusion suivante tres-swguhere.

Si dans la formule
W () fu + ((u*n) ><f‘u> ((u_n)’ s ) ~ efc.

on ne retient que les termes qui ont des puissances negatives
de u, elle donne la valeur de la somme des puissances — 1
de toutes les racines o, 3, 3 , elc. et si on y conserve tous les
termes , elle ne donnera que la méme puissance de la plus
petite racine .

17. Ainsi, comme nous avons déji trouvé plus haut pour les
racines o et £ de I’équation cax* — bx + @ = o, la formule

O - O =

n(n—>5 n— c3
- 2).5(63 4) E) -+ ete.

en ne continuant la-série que tant qn’il y a de puissances posi-
x HE . - ; ¢
tives de —» si on continue cette méme série a ’infini sans avcune
- . 1
interruption, on aura alors la valeur du seul terme — 3 an prenant

pour a la plus petite des deux racines « et 8; et méme on pourra
'y faire n positif, ou négatif a volonté.

Les deux racines de Péqualion cx*—bxr - a=o étant o
et B, celles de I’équation aa* — bx -} c=o0, seronti ebs g » et

Yon aura

b g TR b W(B—da)

ag BT 24
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« étant snpposée la plus petite des deux racines. Ainsi la séris

( ( )""’ ”(”;3)‘ (E>"_‘; etc.

- e b G AS,
en ne retenant que les puissances positives de =, c’est-a-dire les

puissances négatives de a, sera égale a

(b+ V(B —4a0))" + (b — V(b — ac))" |
(aa)"

7 étant un nombre entier quelconque , et si on continue la série
a linfini , elle deviendra égale &

(Er i

2a

n étant un nombre quelconque positif on négatif,

La premiére partie de cette proposition est facile & vérifier
par le simple développement des pulssances ntmes . puisque le
radical y/ (4* — 4ac) disparait de lui-méme; et d’ailleurs elle
est déja connue par le théoréme de Moivre.

Pour vérifier I’autre partie, il faut réduire en série le radical
Ini-méme. Ainsien faisant, par exemple, 7 =1, la série devient

b c 9 ac® B.4 ek

g g g T e —ete:

laquelle peut se mettre sous cette forme

1, *9¢ 8ac? 1.1.3 32 ag®c?

1T 3
E""E—E'T Rl "“2.4.6‘ s —etes

b2 —
Or cette série est évidemment égale 3 e -+. v - 4ac):

18. Soit V’équation indéfinie

¢ — bx - cx* — dx* - ext — fx* -~ etc. = 0

on fera dans la formule générale du théoréme ci-dessus

cu? — du’ 4 eut — fu - etc,
Vi — 3
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d’ol1 1'on tire
f’u‘ cut — acdub - (d* 4 2 ce) ub 4 etc.
bl
. Aul — Zedu’ -+ ete.
fiu )

Aub — ete.
f‘u T m——
bt

etc.

Or (v) =7rw="; donc

ror curtt — du't? 4 en'+3 — furt4 4 ete.
(lt ) > f i i b
ur+3 — o cdut*+4 4 (d> - 2 ce) w3 4 ete.
Wy x fru=r y
cur+3 — BFedut+® 4 etc.
(@) x fru=r 5

y ‘ ctut+7 - ete.
(@ X [l = 7 e

Prenant les fonctions dérivées, et substituant dans la formule

il s'aoi ¢ ir fait =<, et changé «
dont il s’'agit, on aura, apres avoir fait u =7z, ¢ gé
[ 1 9

atle t.11'--|--=d af+ie ar+4f

X __EF 5 (br+a L3 b Ry S = +Etc')

(r43)a"**c* (r+4) a3 < acd (r5)a"+ (a® + ace)
?_( r B - Br+a + ] + th.)

- 4) a3 6) (r 4 5) a4 3cd
RCEROTCEY L asly P GE S ICE =) Lied 2.1 NP

ar+h b
+254((r+7)(r+6)(r+5) c+etc)

etc.

19. Si r==1, on aura

atc afe asf
$=f;+ b:;""b4+b5"""’ -~ etc.

Bic? S5ated |, :3a°(d*1-2ce)
=4 —55-‘3- - S - - ete.

5atc? Qla 5ed

el - etc.

14a ct

-

etc.

-~ ete,
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C'est la formule connue de Newton, pour 1€ retoun des suites,
qu'on n’avait encore trouvée que par-la méthode’ des indétermi-
nées. L’analyse précédente, en méme temps qu’elle donne la loi
de cette formule et le moyen de la continuer andsi”loin” ¢qu'on
voudra , fait voir que la valeur de @ qu’elle exprime est la plus
petite ‘des racines de Péquation proposée.

20. Si on veut appliquer la formule précédente i la détermi-
nation de la valeur de p dans I'équation

2 -} y
Fcz—f—pFLz—l—%P"w—{—%Fa—f—etc.:o,

que nous avons considérée au commencement de cette Note,

] » 1 = ’ 1 " 1 i
il n’y aura plus qu’i snbstituer Fa/, — Fa, EF a, _RF a;etec.

au lien de a, b, ¢, d; etc. et p an lien de x; on aura ainsi

= (Fa)Fa: . (Fa)F'a _ (Ta) (Fa):
f oin + 2 (F'a)’ ey 2.3 (F'a) =5 2(Fa)’ -~ etc.

ce qui donne la méme série que nous avons trouvée par deux
méthodes dlfferentes.

Nous pouvons généraliser encore 1a formule du théoréme donnée

plus haut. En effet, puisque « est une des valeurs de x ,. ce théo-
réme peut se présenter ainsi.

21, L’équation x = u  fxr donne en général
are= w4 (W) X% fu+ ((M L u) - (M) 4-lete.t

+Or ; soit Fz une fonction quelconque donnée de' a, om peut:
la supposer réduite & la forme Max" 4= Na' - Pa* - etc. ; ainsi, -
pour la valeur de Fx, il n’y aura qu’a ajouter ensemble les va-
lears de &', ', 2', etc. multipliées respectivement par M, N,
P, etc.; on aura par ce moyen une formule dans laguelle, a la

place de u", il y aura Mz’ 4 No' + Pu* -}~ ete. ce.«.-t-a dxre Fu,;
et par conséquent I’z a la place de (w7).
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De 1 résulte enfin ce nouveau théoréme, remarquable autant
par sa généralité que par sa simplicité.

. L’équation, x = u -+ fx donne
Fo=Fu-+Fux fu-ti(Fuxfu) 475 (Fuxfu) + el

oi les fonctions désignées par les caractéristiques f et ¥', peuvent
élre quelconques.

En effet, ce théoréme, présenté de cette maniere, est indépendant
de la considération des racines, et n’est plus qu’un résultat de la
transformation des fonctions, qu’on peut vérifier par I’élimination
successive de x ou de z. J'ai donné le premier ce théoreme dans
les Mémoires de I'Académie de Berlin, pour Pannée 17685 j'y.
étais parvenu par une analyse a-peu-prés semblable & la précédente,
mais moins rigoureunse. Plusieurs Géomeétres se sont occupés depnis
4 le démontrer & posteriori par le développement des fonctions
mais Laplaceen a donné, dans les Mémoires de I’Académie des
Sciences de Paris, pour Pannée 1777, une démonstration directe
et élégante, tirée du calcul différentiel ; c’est cette démonstration
que j’ai transportée dans la Théorie des fonctions (n° 9g).

Tl est bon de remarquer qu'en faisant z = o, I’équation
2 = u - fx devient x = fx, laquelle peut représenter une équation
quelconque en x; et ’on aura la valeur d'une fonction quelconque
Fx, en faisant z = o dans la série

Fu-+Fu xfa-{-—é (F'u ><f‘u)’+§-f-5- (Fu % f*u) 4 etc.

aprés le développement des fonctions; ce qui est beaucoup plus
simple.

22. Avant de terminer cette Note, je vais faire voir comment
la méthode du n° 13, pour résoudre par approximation I’équation
F(a-+4p)=o0, peut étre appliquée & la résolution simultanée
de plusieurs équations & plusieurs inconnues,
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Supposons que 1'on ait deux équations entre les deux inconnues

2 et y que nous désignerons en général par F (x, y) = o, et

J(z,y)=o0. Supposons en méme temps qu’on connaisse déj3

deux valeurs approchées @ et &, de z et y; ensorte qu'en faisant

T=a-+p, y=>b-4g, les quantités p et ¢ aient des valeurs
fort petites. Il s’agira de tirer ces valeurs des deux équations

F(a+p, 54+ 4g)=o0, f(a=+p, b4 g) =o.

Suivant I'esprit de la méthode de Newton, on développerait les
deux fonctions en séries, les deux équations deviendraient ainsi

F(a, 8) + Mp 4+ Ng = etc. = o,
f(a, b) 4+ mp + ng - etc. = o,
d’oli I'on tire pour premitre approximation

__Nf(a, b) —nF (a, b)
e = Mn—Nm

e Mf(a,b)-——mF (an b)
P Nm—Mn ;

Ainsi @ et b étant les premiéres valeurs approchées de = et 5,
a=p, b+ g seront des valeurs plus approchées qu'on pourra
substituer a la place de @ et b dans les fonctions p et ¢; et dési-
gnant par p, , ¢,, ces nouvelles valeurs de p et ¢, on aura a--p—+p,
et &+ g +¢. pour les valeurs de = et y encore plus approchées ,
et ainsi de suite. :

Ce procédé a été donné par Thomas Simpson , dans ‘ses Essais
sur plusieurs Sujets mathématigues, et il est assez commode pour
le calcul arithmétique; mais il serait difficile d’en tirer des expres-
sions de x et ¥ en séries ordonnées suivant les puissances des
quantités F (e, b), et f(a, b), qui expriment les erreurs prove-
nantes des premiéres suppositions , et surtout d’avoir la loi de ces
séries; voici comment on peut y parvenir.

On regardera les quantités a 'et 5 comme des fonctions quel-
conques de deux autres quantités « et 3, etc. de manitre que
ces quantités devenant a-~Z et B -0, les quantités a et &

30
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deviennent @ +p et &4 ¢; et on supposera que ces fonctions
soient telles que F(a, &)=a et f(a, &)= [; ce qui donnera
en mettant a -}z et B+ 0 an lieu de « et 2,

Fl(adp, b4q)=a+i, f(a+p, b+g)=pL-+o0;

de sorte que les équations proposées deviendront alors o ~i =10
et B 4+ 0o =o0; dou Pon tire i ==— a = —F (a, b) et
o==—f==f(a, b).

Or, en adoptant la notation des fonctions dérivées, indiquée
dans la Note précédente (n® g), les fonctions a et & des quantités

a et B, lorsque ces quantités deviennent a -7 et B 4-0, se
développent dans les séries

ot () 0+ ()5 + (L) o+ (£) S -t
b+ Gt () () o+ (5) S

Donc, substitvant — F (a, &) pour 7 et — f(a, &) pour 0, on
aura

e (%)F(a b)—(%f)f(a, b)

+1 (%) FG@, 0+ (37) Fa, b) x fla, B)
+1 (E—)f(as bY - ete.
g = —-(%) F(a, ) — (g;)f(rz, b)

- % (5—:—) F(a, ZJ)I-{- (d‘l_lgl) F(a,0) X f(a, b)
g (é’_')f_@",_bj—;- etc,

ot il n’y aura plus qu’a substituer les valeurs des fonetions pars
tielles (%), (%) X (%) , etc. qu'on tirera des équations
Fayb)=a, et flay,d)= £y

en prenant successivement les fonctions dérivées relativement
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a et B, et substitnant & mesure les valeurs dc;a trouvées
les suivantes.

insi on aura d’abor
Al d’abord

(F’(;,b)) — (F’(a b)) =
(Ee) =e, (C52) =1,
Mais on a en général, relativement & @ et &,
F,(a,b)_(F(a b)) +(F (a, b)) ¥,
£ e b)) = (f (o, b)) +(f (a b)) ¥

donc, en regardant @ et & comme fonctions de « et 3, on aura,
relativement & chacune de ces quantités en particulier,

(E50) = (F52) s (4) + (C52) x (D)=,
(52 = (C52) % () + C52) x ()=,
() = (20 x () + (52 x () =,
EGD) = C92) x (@) + C52) = () =+

d’ou l'on tirera les valeurs des quatre fonctions dérivées partielles
bl
du premier ordre ( ) (8’) ( ) ), exprimées par les fonc-

tions partielles (1“ e, b)) (’(“ b)) (f La, 5)) (f’ a, b)) ot

sont faciles a deduue des fonctions donmea Fia;y 8)s f(a; b},
en prenant leurs fonctions dérivées, relativement & @ et b en
parliculier.

Ensuite , en prenant de nouveau les fonctions dérivées des va-

' { '
leurs (g—) 5 (Z—), etc. relativement & « et 3, on aura les valeurs

de (a—) . (;%) , etc. et ainsi de suite.
o

h
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Si on fait pour abréger

(F’(a b)) B (P (a b)

(f_(:_b_)) s (f (;,b)) s

on aura

[I.
( )_' Mn—Nm )— Mrz-—Nm
(g 2 L1 Mp < Nm
a;’)— Mn—Nm’ (;’5.")'— R | i
et les premitres valeurs de p et ¢ seront
50, nF (a,b) Nf(a, b)
P e N o Mn—Nm ?

e mF (a, b) ]VI_f'((z,b)
g.= Mr— Nm ~  Mn— Nm'

Ces premicres valeurs de p et ¢ coincident avec celles que nous
avons trouvées ci-dessus ; mais les formules que nous venons de
donner pour les expressions générales de p et ¢ ont ’avantage de

présenter des séries toutes développées, et faciles & continuer
aussi loin que l'on veut,




NOTE XIIL

Sur la maniére de transformer toute équation , ensorte que
les termes qui contiennent Pinconnue, atent le méme signe,
el que le terme tout connu ait un signe différent.

J "AT observé dans I'Introduction, que les méthodes de Fiere et
de Harriot , pour la résolution des équations numériques, ne
peuvent s'appliquer d’une maniére certaine quaux équations don
tous les termes qui contiennent I'inconnue, ont le méme signe ,
et le terme tout connu a un signe différent, et j’ai dit qu’on peut
toujours ramener a cette forme toute équation , pourvu qu’on ait
deux limites d’une de ses racines , lesquelles soient assez rappro-
chées pour que toutes les autres racines réelles, ainsi que les parties
réelles des racines imaginaires, s’il y en a, tombent hors de ces
limites. Comme j’ignore si cette transformation est connue , je crois
devoir l'exposer ici afin que ceux qui desireraient se servir des
anciennes méthodes puissent toujours les employer avec succes.

1. Soient @, b les deux limites données, ou connues d'une
maniére quelconque, ¢ la limite en moins, & la limite en plus,
En supposant que x soit I'inconnue de I’équation proposée , on

b b | . . r -
fera =z = E;H » et apres les substitutions et les réductions , on

aura une équation transformée en y, du méme degré que I'équation
en x, qui aura la forme demandée, si la limite @ est assez prés
de la valeur de la racine.

Car soient o, B, 3, etc. les racines de 1'équation proposée
en x, et o la racine dont @ et b sont les limites. Puisque

L + by = I = - sy -
PR s OAWE = pr donc les racines de 1’équation

SCD Lyon 1
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d==a pf—a y—a
en y seront ——» 737 g—-'y
a

-_—
a>a<b;donca—a>o0, b — o > 0; donc la racine z—_-;
sera positive et d’autant plus petite, que la différence entre la
limite @ et la racine a. sera moindre. Ensuite , comme les autres
racines 3, 7, etc. sont supposées tomber hors des limites a et b,

si B < a, on aura aussi nécessairement 8 < b, donc B—a <o

, etc. Or on a par I'hypothése

L B—a : o
et b — (> 03 donc la racine ;—p Sera nécessairement négatives

Si, au contraire, 8 > b, on aura aussi 3 > a; donc B—a>o0

et b— 3 < 03 donc i:z sera encore une guantité négative.

. B—a -
Donc la racine ;— sera dans tous les cas négative. Il en sera

. Ll
de méme de toute autre racine, come 4

C ¥
s correspond a

une racine réelle y de I’équation en x.

. Mais supposons que 8 et y soient imaginaires , elles seront
nécessairement de la forme p 4 ¢ V—1,p—0cy —1;
p et o étant des quantités réelles ( Note IX ); donc faisant
—adzy—1
—p—cy —1’
multiplions le haut et le bas pat b —p oy — 1, on awa
'FP—G) (b_‘c()b__:;__f_i;a) V! WMais on suppose que la
partie réelle p tombe aussi hors des limites @ et & ; donc sip < a,
on aura aussi p < b3 par conséquent p—a < 0, b — p> 0;donc
Lp—a ) Lo pJ. 505 €l si p> b, on aunra aussi p>a;
donc p—a >0, b — p < 0, et par conséquent aussi (p—a)
(b—p) < a; donc la quantité (p—a) (b — p) sera dans tous
les cas négative. ‘

Donc , puisque ¢* et (D — p)* sont essentiellement des quan-

; s
b— P
— P+ Qy—1,Pet Q étant des quantités réelles, et P étant
essentiellement positive. De méme, en faisant ) =p—¢ V—1,

—

B=p—+cy —1, laracine i-—ﬁ deviendra

tités positives, la racine deviendra, dans ce cas, de la forme

. gl . P [
la racine ?;__7 deviendra — P = Q ¢/ — 1, et ainsi des autres

racines imaginaires.
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Done, en prenant des quantités positives p, ¢, r, ete. P, Q,
R, etc. les racines réelles de I'équation en x donneront dans la
transformée en y les racines réelles p, —q, —r, etc. et les
racines imaginaires de la méme équation donneront dans la
transformée les racines —P 4+ Qy/ —1, — P — Qy —1,
—R4-Sy—1, —R—S y/— 1, ete. Donc la transformée
en y sera formée des facteurs

Y —Ps Yy+4q, y+r, etc. y4+P—0Q ¢y —1,
.’Y+P+Ql/""‘lxj’-f-R—S\/—l:Jf-f—R-f—S\/—l,etc.’

Or les deux facteurs imaginaires y 4= P — Q y/ — 1 et

J=+P+Qy/—1, donnent le facteur double réel y*+ 2Py 4 P2 Q2
et ainsi des autres. Donc 1équation en y sera

—P)o+9)y=+7). (y*+2Py+P*+-Q*) (y*+2Ry-+R*-4-8%)..=o0,

2. Considérons le produit de tous ces facteurs, excepté le pre-
mier , y — p ; comme tous les termes de ces facteurs sont positifs,
il est visible que leur produit, ordonné par rapport & y, ne

pourra contenir que des termes positifs. Le produit sera donc de
la forme

Il - Aymmt o Bym=3 4-ete.' 4= K,

ou les coefficiens A, B, C, ete. K seront tous positifs, sans
quaucun puisse étre nul. Multiplions maintenant ce polynome par
le facteur y — p, on aura

PEA (A== pYR=rsfi (D — Ap ) y==% - (C — Bp)y~=s
+ etc. — Kp = o

pour I’équation en y.

On voit ici que le dernier terme — Kp est essentiellement né-
gatif, et que les termes précédens seront tous positifs, si 1’on a
A>p, B> Ap, C> Bp, etc. Comme en rapprochant la

Janl A ‘ o — -
limite @ de la racine « , la valeur de p, qui est b~:’ peut devenir

aussi petite qu’on voudra, il est clair qu’on pourra toujours prendre o

|
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: B C 3
telle que l'en ait p < A, < £, < §» etc. ce qui rendra tous les
termes positifs, excepté le dernier.

On ne doit pas craindre qu’en diminuant ainsi la valeur de p;
les valeurs de g, 7, etc. P, Q, etc. diminuent en méme temps,
de maniere & devenir nulles avec p. Car en faisant' a = «, ce
qui donne p = o, la valeur de ¢, qui est g___z deviendra —-—i:z.

‘ —a)(b—p)—0c (b—a)s
et les valeurs de P et ui sont—E—DO—N—2" o ;
QJq (b_;u)a__!_o..; (b_P)=+a.z

: e N ST 2o S
deviendront ¢ (;)—(P)” _fﬂ 2 et (b(ip)jzg-;’ et ainsi des autres.

Donc on est assuré que la substitution de %ﬁl au lieu de z,

donnera une fransformée en y qui aura la condition demandée,
pourvu que la limite @ en moins soit assez prés de la racine dont
elle est limite; ce quon pourra tovjours obtenir en essayant suc-
cessivement pour @ des valeurs grandes.

5. On a trouvé dans le chap. IV (n°27) que P’équation 2°—rx
~-7=0, a trois racines , deux positives et une négative ; et que les
deux racines positives sont exprimées par des fractions continues,
dont les termes sont 1, 1,2, 4, etc. et 1, 2, 1, 4, etc.; de la
on peut former ces fractions convergentes vers les deux racines

2 - letel

Wi

sl

]' s ete,

On voit d’abord que 1 et 2 sont deux limites de la premitre
racine ; mais, comme la seconde racine est renfermée entre les
nombres 1 et 2, elle se trouve aussi nécessairement renfermée
entre les mémes limites ; on prendra donc les limites suivantes 2

5 . 32y
et 3, et on fera a =%, b =2, et par conséquent x — i

1 —i—y
= l':_ivy. Mais puisque les multiples de y ne changentspas les

signes de I’équation en y, on pourra faire simplement o = %%”‘,
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en mettant y pour 3y. On trouvera ainsi la transformde

P L e ARSI 0y
qui est, comme l'on voit, i I'état demandé.

De méme, si on prend pour l'autre racine les limites -, en

et &,

faisant @ =% et b =2, on aura la substitution x — 1_:-3»1
849y : i i 3.
5t y)? ou bien, en mettant simplement y au lieu de 3y,

843 r
e — 6+°~X s et Pon trouvera la transformdée
+2y S

i
Z
4
3

¥y 8yt 4y —8 =0
qui a aussi la forme demandée.

Les limites que nous avons employées ont conduit directement
aux transformées que 'on cherchait ; mais si on avait pris, par
exemple , pour la premiére racine les limites 2 et 3, qui ont éga-
lement la propriété qu’aucune autre racine §’y trouve' comprise ,
puisque I'autre racine réelle est moindre que 2, on aurait en @ = Sz

3
. - e s-4+2 3 3
b == 2; ce qui aurait donné la substitution » = 212¥ __ S+4y =
L Lt Yia | Al shy)
. 2 .
ou bien, en mettant y pour 2y, ¥ = 2_:_;’; et ’on aurait trouvé
la transformée

_y3-+-_y’—2_y—-1.:o,

qui n’a pas encore la forme demandée, parce que la racine posi-
tive se trouve trop grande.

Mais , sans recourir a une nouvelle substitution en augmentant
la valeur de a, il suffira de diminuer toutes les racines d’une
méme quantité 7, en faisant y = z -}- 7, et chercher ensuite par
des essais une valeur de 7 qui satisfasse ‘aux conditions qu’on de-
mande. On aura ainsi cette transformée

P4 Bit)+ Bl 420 —2) 24P P —2i—1=0;

et il s’agira de prendre 7 positif , et tel que 3724~ 27> 2 et
B 4gt <27 -~ 1. On voit tout de suite que 7 = 1 satisfait, et
31
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I'on a la transformée
2} = 42 43z — 1 = 0,
qui est la méme que la transformée en y trouvée d’abord
4. Nous avons vu dans l'article IIT du Chapitre V (n° 72),
que si — ~ et £ P sont deux fractions convergentes vers une des

racines de I’"équation en x, la transformée en # qui doit servir a
trouver la fraction suivante , résulte directement de la substitution

4

de ® t_':_' ;5 au lieu de x dans I’équation proposée. Faisons ¢ ____;l’ »

on aura
By Bighipands
—";7—+'W'=r.-y+ ”_r

7' (y+1) y4

Cette substitution est, comme I’on voit , analogue a celle que

T =

nous avons employée ci-dessus, en prenant — et - pour les denx

limites que nous avons nommées a et b.

Or , comme deux fractions consécutives sont elles-mémes des
limites alternativement plus grandes et plus petites que la racine
cherchée, et qui se resserrent continuellement , il s'ensnit que les
transformées qui répondent aux fractions plus petites que la racine,
approcheront de plus en plus d’avoir les conditions nécessaires
pour pouvoir &étre de la forme proposée; et les transformées in-

r

termédiaires auront la méme propriété , en y substituant§

; < lap ; 2 "
au lieu de y; carsi — > f,—, I'expression de x devient par cette

Sy+ £
substitution 2 £
¥t

T.a différence entre les deux fractions = et - étant — 77 lors-

7

que cette différence sera devenue moindre que Ia plus pehte dif-
férence entre les racines de I'équation proposée , ¢’est-a-dire moindre

s e 1 .
que la limite ;- (Note IV'), on sera assuré qu’il ne pourra tomber

entre ces fractions qu'une seule racine; mais , & Iégard des parties
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réelles des racines imaginaires, il ne sera pas facile de s'assurer
a priori qu'elles tombent hors de ces fractions , & moins de former

I’équation , dont les racines seraient o — B'i'?, et de chercher

ensuite une limite plus petite que chacune de ces racines, pour

la comparer avec la ' méme différence ;;?

Au reste, quoique les fractions conséeutives fournissent des li-
mites qui se resserrent de plus en plus autour de la méme racine,
il est possible que les transformées n’acquiérent jamais la forme
dont il s’agit, par la raison que les deux limites se resserrant a-
la-fois, la racine positive peut aller en augmentant au lieu de
diminuer. Mais lorsqu’on sera parvenu & des fractions entre les-
quelles il n’y aura qu’une seule racine réelle et aucune des parties
réelles des racines imaginaires, il suffira de diminuer toutes les
racines de la transformée correspondante, d’nne méme quantité

qu'on pourra trouver par quelques essais, comme on. l'a vu plus
haut. '

Lorsqu'une équation est réduite a la forme dont nous parlons ;
c’est-a-dire que tous ses termes ont le méme signe, & I'exception
du dernier terme tout connu, on fera passer ce dernier terme dans
le second membre, et on pourra en extraire la racine a-peu-prés
comme dans les équations a deux termes on il n’y a qu'une seule
' puissance de I'inconnue ; seulement on aura besoin de plus d’essais

et d’épreuves, a raison des différentes puissances de I'inconnue
qu’elle contiendra.

Ainsi, par exemple, si 'on a I'équation du troisieme degré

i Ayt By —N'=="0,

dans laquelle A, B, N, sont supposés des nombres positifs, en
la mettant sous la forme

y'+ Ay* + By =N,

on voit qu'au lieu d’extraire simplement du nombre N la racine
de la puissance y°, il s’agit d’en extraire celle de la somme des
puissances y° - Ay* -+ By ; et si @ est la partie de celte racine
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déja trouvée, et p le reste , on aura
(Ba*+2Aa+B)p+ Ga+A)p+p=N—a'—Aa*~Ba;

et par conséquent

N—a(ad 4 Aa+B)
e 3a*4-2Ae+ B !

£ . 1 s N-—-(23
formule qui répond i celle-ci p < i

fondé le procédé de I'extraction de la racine cubique.

, sur laquelle est

Prenons I'équation trouvée plus haut
Y+ 4y + 3y —1=o,
la formule sera ici

p<1——a(a°+4a—|—5)

3a*+8a-+3

L]

11 est d’abord facile de voir que le premier chiffre de la valeur
de @ ne peut étre que o, 2 ; faisant donc @ = 0,2, on trouvera

0,2%2
B 4,72

sera 0, 24, et l'on trouvera p <

> 0,05. En prenant p= 0,04, la nouvelle valeur de 2

,0368. ..
%—<0,008, etc.




NOTE XIII.

Sur la résolution des équations algébriques.

LA résolution des équations du second degré se trouve dans
Diophante , et peut aussi se déduire de quelques propositions des
data &’ Euclide; mais il parait que les premiers Algébristes italiens
Pavaient apprise des Arabes. Ils ont résolu ensuite les équations
du troisieme et du quatriéme degré ; mais toutes les tentatives
qu’on a faites depuis pour pousser plus loin la résolution des équa-
tions, n’ont abouti qu’a faire trouver de nouvelles méthodes pour
le troisitme et le quatriéme degré, sans qu’on ait pu entamer les
degrés supérieurs, si ce n’est pour des classes particulieres d’équa-
tions, telles que les équations réciproques qui peuvent toujours
s’abaisser & un degré moindre de la moitié, celles dont les racines
sont semblables aux racines des équations du troisitme degré et que
Moivre a données le premier , et quelques autres du méme genre.

1. Dans les Mémoires de I’Académie de Berlin (années 1770
et 1771), j'ai examiné et comparé les principales méihodes connues
pour la résolution des équations algébriques, et j’ai trouvé que ces
méthodes se réduisent toutes en derniére analyse a employer une

équation secondaire qu’on appelle résolvante, dont la racine ese
de la forme

' =+ ax’ - *z" 4 o’  ete.
en désignant par «', &’, 2%, etc. les racines de ’équation proposée,

et par o une desracines de lunité, du méme degré que celui de
I'équation.

Je suis ensuite parti de cette forme générale des racines, et
vai cherché & priori, le degré de I'équation résolvante et les

i
B
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diviseurs qu’elle peut avoir, et j’ai rendu raison pourquoi celfe
équation , qui est toujours d’un degré plus hant que I'équation
donnée, est susceptible d’abaissement pour les équations du troi-
sicme et du quatrieme degré, et peut servir & les résoudre.
J’ai cru qu’un précis de cette théorie ne serait pas déplacé dans
le présent Traité, non-seulement parce qu’il en résulte une mé-
thode uniforme pour la résolution des équations des quatre premiers
degrés, mais encore parce que cette méthode s'applique avec succes
aux équations & deux termes , de quelque degré quelles soient.

2. Représentons I’équation proposée par la formule générale
: Z" —— Axm = == Ba™7? — Czx™—® -}~ efc. = o,

et désignons ses m racines par «’, 2", x”, etc. ™ ; on aura par
les propriétés connues des ¢quations ,

A=z 424 2" ‘+ ete. 4= x™
B 22" + 22" 4 ete. + 2’2" -+ ete.
C x'x’x” 4= ete.

Soit # I'inconunue de I'équation résolvante ; nous ferons, d’aprés

ce que nous venons de dire,

2 — a;! + d..z.‘” + “SJL‘W + d3mn‘ + etc. + d'fo‘r(rn)

la quantité o étant une des racines mtwe de I’unité , c’est-a-dire,
une des racines de I’équation a deux termes y™ — 1 =o.

Pour avoir I'équation en 2, il faudra éliminer les 7 inconnues
', 2", ", etc. au moyen des équations précédentes qui sont aussi
au nombre de m; mais ce procédé exigerait de longs calculs, et
aurait de plus I'inconvénient de conduire & une équation finale
d’'un degré plus haut qu'elle ne devrait é&tre.

3. On peut parvenir directement et de la maniére la plus simple
a I'équation dont il s’agit, en employant la méthode dont nous
avons fait un fréquent usage jusqu’ici, laquelle consiste & trouver
d’abord la forme de toutes les racines de 1'équation cherchée, et
a cowposer ensuite cette équation par le moyen de ses racines.
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Tl est d’abord clair que dans I’expression de z, on peut échanger
entre elles a volonté les racines =, 2", ete. » Puisque rien ne
les distingue jusqu'ici l'une de I’autre. D’oir il suit qu’on aura
toutes les différentes valeurs de #, en faisant toutes les permu-
tations possibles entre les racines =, 2", 2", etc.; et ces valeurs
seront nécessairement les racines de la réduite en 7, qu'il s’agit
de construire.

Or on sait par la théorie des combinaisons que le nombre des
permutations qui peuvent avoir lieu entre m choses, est exprimé
en général par le produit 1.2.5....m; donc ’équation en z aura
en général autant de racines qu’il y a d’unités dans ce nombre ,
et sera par conséquent d’un degré exprimé par le nombre 1.2.53. , 5
mais nous allons voir que cette équation est susceptible d’abais-
sement par la forme méme de ses racines.

Comme cette forme dépend de la quantité « qu’on suppose éfre
une racine de 1’équation y™ — 1 = o, nous commencerons par
quelques remarques sur les propriétés des racines de cette équation ;
et pour cela, nous considérerons séparément les cas ot I’exposant 7z
est un nombre premier, et celui ou cet exposant est un nombre
composé.

4. Snpposons d’ahord que le nombre m soit premier; dans ce
cas, toutes les puissances de o jusqu'a «™ auront des valeurs dif-
férentes, & moins que Von n’ait @ = 1. Car si deux puissances
a” et o étaient égales, on aurait e"=—=a", et de 1a a»—" —1; or au-
cune puissance de « moindre que m ne peut &ire = 1 tant que «
h’est pas — 1. KEn effet, puisque a™ — 1 = 0, si 'on avait en
méme femps a® — 1 = 0, 7 étant < m, il fandrait que ces deux
équations eussent une racine commune ; et en cherchant par les
regles ordinaires, le plus grand commun diviseur des deux quantités
a" — 1 et a"— 1, on trouve nécessairement & — 1 pour ce di-
viseur , a cause que m est un nombre premier; de sorte que la
racine commune aux deux équations a” — 1 =0 et a" — =0
ne peut étre que I'unité,

5. Il ¢’ensnit de 1a, 1°, que les puissances «, a*, a®, etc. a”
représentent toutes les racines de l'équation 3" —1 =0, en
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prenant pour o une queleconque des racines de cette équation,
autre que I’unité. Car puisque a™ =1, on aura aussi &’ =1,
e’"=— 1, ete.; de sorte que les puissances @, a*, a3, etc. a™ seront
aussi des racines de la méme équation ; et comme elles sont au
nombre de m, et ont toutes des valeurs différentes , elles don-

neront nécessairement toutes les racines de ’équation y™ — 1 =o,

6. Tl s'ensuit aussi, 2° que si dans la série des puissances
o, a*, a®, etc. "', on substitue pour a une quelconque de ces
puissances, comme o, 1 étant < m; la nouvelle série a”, a*",
a™, ete. en rabaissant toutes les puissances au-dessous'de a™, a
cause de «™ = 1, contiendra encore les mémes pnissances, mais
dans un ordre différent; car il est visible que tousles exposans
n,2n, 3n, etc. sont différens, et que leurs restes de la division
par m le sont aussi, parce que m est un nombre premier; de
sorte que ces restes étant au nombre de m, et tous différens entre
eux , ne peuvent étre que les nombres 1, 2, 3, ete, m.

7. Considérons maintenant le cas ol 72 est un nombre composé.
Dans ce cas, si 7 est un diviseur de m, toutes les racines de
Péquation y" — 1 = o seront communes & "équation 3™ — 1 =o,
parce qu’en supposant le nombre rracine de I’équation y* — 1 =o,
on aura r"==1, et par conséquent aussi 7" = 1; de sorte que r sera
aussi racine de ’équation y™ — 1 = o. En faisant donc a =r, on

ura a” =1; etsim = np, il est visible que dansla sériedes puis-
sances «, a*, a, etc. a™, chacune se trouvera répétée p fois;
par conséquent ces punissances ne pourront plus représenter toutes

les racines de I’équation y™ — 1 = 0, parce que cette équation
ne peut avoir de racines égales,

8. Soit m =pq, p et g étant deux nombres premiers , et soit 3
une des racines de ’équation y» — 1 = o0, et 3 une des racines
de P’équation y? — 1= 0, il est clair que 8 et 7 seront aussi
racines de I’équation y™ — 1 =0, parce que [ et 3’ étant =1,
on aura aussi =1, 3% ==1; mais toutes les racines de I’équation

¥" — 1 =0 ne pourront pas &étre représentées par les puissances
successives de ces racines 8 et 7.

On yoit aussi que le produit By sera racine de la méme équas<




tion ™ — 1==0; mais aucune puissance de cette racine, dont
Pexposant serait inférieur & m, ne pourra étre égale a P'unité,
4 moins que [ ouy ne soit==1; car il faudrait que ’exposant de
cette puissance fit un diviseur de m, et par conséquent égal &
p ou & g3 on amait donec (By)y =1, ou (£y) = 1. Dans le
premier cas, on aurait 3? =1, i cause de =1 (hyp.); et
comme on a déja 3 — 1=o0 (hyp.), il en résulterait 5 — 1 =o,
4 cause que p et g sont premiers entre eux; dans le second cas,
on aurait £ — 1 = o.

9. Ainsi, tant que B ety sont différens de I'unité, la racine By
de P’équation y"— 1 =0, a, lorsque m = pg, la méme propriété
que la racine « lorsque m est un nombre premier, savoir, que toutes
les racines de cette équation peuvent étre représentées par les puis-
sances successives de [3y.

10. Comme les valeurs de B sont au nombre de p, et celles

de 3 au nombre de g, les valeurs de 8) seront au nembre de pg,
c’est-a-dire de m; et il est facile de prouver que-ces valeurs seront
toutes différentes entre elles, parce qu’elles peuvent étre repré-
sentées par ', en faisant successivement r=1, 2, 5...p et
s=1,2,3...q,a cause que les nombres p et g sont supposés
premiers. D’on il suit que toutes les racines de I’équation y"—i1—o,
m étant = pg, peuvent &tre représentées par les produits 8y des
racines des équations y* — 1 =0, y'— 1 =0, p et g étant des
nombres premiers.
* ‘On prouvera de méme que si m=pqr, en supposant p, g, r des
nombres premiers, et que 3, 7, d' soient respectivement des racines
quelconques des trois équations y? —1=0, y'—1=0, ' — 1 =0,
le produit Byd', en donnant successivement 4 8, 7, J' toutes
lenrs valeurs, pourra représenter toutes les racines de 1’équation
y™— 1=0; et que celles de ces racines qui seront exprimées par
B4 en excluant I'unité des valeurs de 3, » ;- J', auront les mémes
propriétés que les racines de I’équation y™—1=29, lorsque m
est un nombre premier.

Et ainsi de suite.

x1, Mais si Von avait m = p*, p étant un nombre premier, en
32

SCD Lyon1:




250 NOTE XIII.
prenant 8 pour une quelconque des racines de I’équation y? —1=0,
il est clair que B serait aussi racine de I’équation y™ — 1 =0,

p . -
et que /3 le serait aussi. On prendrait done, dans ce cas, poury

une quelconque des valenrs de ‘/)@ , et 'on aurait également By
pour l'expression de toutes les racines de ™ — 1 =o.

De méme, si m _p en conservant les valeurs de 2 et 5,

on ferait de plus J'= \/B, et ’on aurait 8)d' pour Vexpression
de toutes les racines de y™ — 1 = 0, en donnant successivement
a B,y d toutes leurs valeurs. Et ainsi de suite.

12. Donc en général, si m = prg'r*..., et que f3, 3, d\ etc.
soient respectivement des racines quelconques des équations
y—1=0,y'—1=0, y¥—1=0, etc. p, ¢, r, etc. étans

g ; A P
des nombres premiers; si on fait de plus /= /B, "= /f/, elc.

I \?/gf, e \q/g/", efe, d = ‘}J‘, J = ‘r/d"’, etc. on aura
BER"... <X 399 ... x d'd"... pour lexpression générale des
racines de I'équation y™— 1 = 0, en donnant successivement &
B, @; etc. 3,9, ete. 4, d, etc. toules les valeurs. dont ces quan-~
tités sont susceptibles chacune en particulier.

~ On voit par 12 que pour. avoir les racines de ’équation A deux
termes y” — 1 =0, ldrsque m n’est pas un nombre premier, il
suffit de résoudre des équations semblables des degrés dont les
exposans soient les nombres premiers qui composent le nombre 7.

13. Enfin nous remarquerons que comme I'équation 3™ — 1 = o
manque de tous les termes intermédiaires , si on nomme 1, a,,

B, 7 etc. ses facines, onaura par les formules générales données:
au commencement de la Note VI,

1 a - B4y 4 & ete
T ar B g2 L ete.
1+ af B 9t I cete.

etes

L aR Tt o Bt e g mr L d'm gt = 03




NOTE XTIII

ensuife, 3 cause de om=1, 3" =1, etc. on aura

1 4 " 4 " 4 9™ 4 J™ 4~ ete.
I + am—l—l_i__ ﬁm+x + .}m+1 + etc.
L it o el ol i el

et ainsi de suite.

Ces différentes remarques nous seront fort utiles dans la suite.

14. Ces préliminaires posés, considérons la fonction
= o + ax” 4 a2’ 4 a3z 4 atx’ - ete, - 2™ ~x™,

dans laquelle &', ", =", etc. 2™ sont les racines de I'équation
proposée du degré m , et « est une racine quelconque de I'équa-
tion ™ — 1 = 0, de maniere que Pon ait a” = 1.

On voit d’abord que cette expression est une fonction inva-
riable des quantités a°x’, ax’, a*x”, etc., et quainsi le résultat
des permutations des racines 2/, x', x, etc. entre elles, serale
méme que celui des puissances de « entre elles.

15. Il s’ensuit de 13 que az sera le résultat des permufations
simultanées de 2’ en ", &" en &”, etc. ™ en-a’, & canse de a"=1.
De méme 2°f sera le résultat des permutations simultanées de 2’
en 2%, 2" en x, etc. 0" en 2, et x™ en 2, a cause de
a" =1, a™t'=ua, et ainsi de suite. '

Donc # étant une des racines de I’équation résolvante en z , af,
a’t, o’ , ete. a™~'¢ seront aussi des racines de la méme équation;
par conséquent 1’équation en ¢ devra étre telle qu'elle ne change pas
en y changeant fen af, en a*t, en a’t, etc. en a™'z; d’ou il est
facile de conclure d’abord que cette équation ne pourra contenir
que des puissances de #, dont les exposans soient multiples de m.

Si donc on fait 7 =10, on aura une équation en 8 qui ne
sera que du degré 1.2.3...m—1, et dont les racines seront
les différentes valeurs de 8 résultantes des permutations des m — x
racines &', a", etc. 2. enire elles.

SCD Lyon
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16. I’expression de 8 sera, & canse de am =1, a™ =1, cfc.
de la forme

9 — E" + OLE’ + aﬂ%" + aﬂEW + ete, _+_ a’m—-.:E(m-—l)

dans laquelle les quantités £°, &', £", ete. seront des fonctions:
déterminées de 2/, 2", 2", etc. lesquelles auront en général la
propriété détre invariables par les permutations simultanées de
. en &', a"en a”, etc. 2™ en 2/, de 2’ en 2" , X' em x' , ete.
2" =Yen 2, a en 27, et ainsi de suite ; ce qui suit de ce que
0 est également &= 1~ = (ait)" == (a%1)", ete.

Lorsque les quantités £°, &, £", etc. seront connues, on aura
tout de suite les valeurs de toutes les racines 'y 2! 2%, ete.

de la proposée. Car puisque f==1", on anra r=/8; et si on
dénote par 1, &4, 8,5, ete. les racines de I'équation y™ — re= o,
et qu'on dénote aussi par 6, 0, 6", ete. les Valeurs de § qui
répondent & la substitution successive de 1,0, B,y etc. ala place:
de o dans Vexpression. de 8, on aura, i camse de

et ki 4 o —_
I =@ 4 ax’ - a’2" | ete. = amr—1g™,

les équations suivantes :
b

o de o " e ete, 2™ = VG
: ;r’ + d&',‘" + an‘z’.ﬁ' + eic., + xm—lx(nl) o
& = Ba" 4 Bra” - ete. o Brrgnd —

" 4 32" 4 92" 4 ete. 4- S A
etc.

Ces ‘&quations étant ‘ajoutées ensemble ; donmeront d’abord par
Yes propriétds des racines 1, «, B’y 5 ete: (A 13),

??t_ m Ean m___ m
ME+ VT4 VI + ete. 4 yiG=D

m

o

Ensuite , si on les multiplie respectivement par 1, am=1, fGm—i
2", ete. et qu'on les ajoute de nouveau ensemble, on aura




NOTE XIII
par les mé&mes propriétés,

m_ m__ BEoi 4
¥ Lah Vr:°+u""“ ‘/,“f L fm—1 ‘/Qﬂ +7’Mhl ‘/"'w‘fbfﬂ‘c.

m

X

On trouverait de la méme maniére

m_ L pea b
m i VP a2V 4B VT 4V 4 e

ni

74

et ainsi de suite.
m

17. Nous remarquerons sur ces formules que le terme \/5° étant
égal & la somme 2’ 4 2" 4 2”7 4= etc. des racines, est donné im-

m
médiatement par 1’équation; de sorte quon a VB = A (n° 2),

équation nécessairement identique , et qui pourrait servir, ¢l en

était besoin , 4 s’assurer de la bonté du caleul.

11 s’ensuit de ld aussi que comme 6° == §° - £’ - g" -~etc. en

faisant & == 1, on aura
& BT £ sto, k EF N oA
el par eonséquent

=A== — g — et

valeur qui étant substituée dans Dexpression générale de 6, Ta

réduira a cette forme plus simple

b= A (2 — 1) ' (2" — 1) E" (2 = 1) £, ete.

"

et I'on aura les valeurs de &, 0", 8, etc. en mettant a, 3, 5 ete,
racines de I'équation y™=' - y"—* - y"=3 L etc. 4 1 =0, 3la
place de & (n°23). :

18. La difficulté se réduit donc a trouver les valeurs des qnan-
tités &', £, £%, etc. qui entrent dans I’expression de §, lorsqu’elles
ne sont pas données immédiatement. Dans cette recherche g ] ]
convient de distinguer le cas ou I'exposant m est un nombre pre-
mier de ceux oft m est un nombre composé.

Supposons d’abord que 7 soit un nombre premier; nous avons

i
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démontré ci-dessus (n° 6), qu'alors en prenant pour « une racine
quelconque de I'équation y™ — 1 =0, autre que 1'unité, si dans
la série des puissances ‘o, a*, a®, etc. a”—', on substitue &
la place de « une quelconque de ces mémes puissances, on
retrouvera toujours la méme série de puissances, seulement dans
un ordre différent. Or il est visible que dans la fonction 2, le
changement de « en «* répond aux permutations simultanées de
a’ en 2", 2" en x", etc. que le changement de « en o® répondra
aux permutations simultanées de 2" en x!¥, 2" en a"', etc. et ainsi
de suite. Donc les changemens successifs de a en a*, o, etc. a™ ",
répondront a autant de permutations ot 2" prendra la place de
x®, 2, ete. % ce qui fait m — 1, permutations dont chacune
pourra ensuite étre combinée avec toutes les permutations possibles
entre les autres m — 2 racines 2", x'', ete. ™,

Il en sera donc de méme de la fonction 6; et comme dans cette
fonction les changemens de « en «*, a®, etc. répondent & des per-
mutations de £" en ', en £, etc. correspondantes a celles de
en x", en &, ete. dans la fonction 25 il est facile d’en conclure
que les quantités Z’, £", £”, etc. seront les m — 1 racines d’une
équation en £ du degré m —~ 1, dont les coefficiens seront des
fonctions de &', &', 2", etc. qui ne seront susceptibles que d’au-
tant de valeurs différentes qu'il y aura de permutations entre les
m — 2 racines &”, x', ete. ™ , c’est-a-dire de 1.2.3...(m—2)
valeurs , et- dépendront par conséquent d'équations du degré
1.2.5...(m— 2).

19. On peut méme démontrer que. tous ces coefficiens ne dépen-
dront que d'une seule équation de ce méme degré; car si on
représente par

gm—t — MZrm=* 4 Ng=—° — ete. == o,

“-'l‘.tf

I"dquation en £, dont £/, £", £, etc. sont les rdcines ; en faisant
dans les fonctions M, N, etc. les 1.2.3... (m — 2) permutations
entre les racines 2", ', etc. on aura autant de pareilles équations
qui, étant multipliées ensemble, denneront une équation finale
en £ dudegré 1.2.3... m— 1, dans laquelle les coefficiens seront
des fonctiops invariables des racines 2/, 2", ", et par conséquent
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déterminables par les coefficiens A, B, C, etc. de I'équation
proposée.

L’équation &7~ — Mg~ - N£m? — etc. = o sera donc un
diviseur de celle-ci; faisant la division & Ja manitre ordinaire,
et égalant & zéro les m— 1 termes du reste, on aura autant d’équa-
tions dont les premigres m — 2 donneront les valeurs de N, P, etc.
en fonctions rationnelles de M. Ainsi il suffira de trouver I'équation
en M du degté 1.2.3...m — 2,

Si donc cette équation pouvait se résoudre, et il suffirait d’en
eonnaitre une seule racine, on aurait les valeurs des coefficiens
de I’équation en £, qui est d’un degré moindre d’une unité que
la proposée , et dont les m — 1 racines seraient les valeurs des
quantités &', £°, £°, qui entrent dans P’expression de 8.

20. Mais, au lien de chercher les racines £/, £, £, etc. i
pourrait étre plus simple de chércher directement &, 6°; §”, etc.
11 est clair que ces quantités seront Jes racines d’une équation en 6.
da m — 1 degré, qu'on trouvera en éliminant « de I'expression
de 8, au moyen de I’équation o™ — 1 =0, apres en avoir 6té la ra-
cine r, c’est-a-dire de I’équation

=t e " T oL 2™ T3 - efe, - 1 = o.

Cette équation en 6§ sera ainsi débarrassée de la racine «, et
ses coefficiens exprimés par les quantités £°, £, &', etc. étant
considérés comme fonctions des racines o, =", 2", ete. ne seront
susceptibles que de 1.2.3... (m — 2) variations par toutes les
permutations possibles entre ces racines; car comme les change‘-
mens de place de ', répondent aux substitutions de «*, a¥, etc:
au lieu de @, et que la quantité « a disparn de I'équation en 4,
il s’ensuit que dans I’expression de ses coefliciens, on pourra re-
garder " comme fixe, ainsi que 2. _

Sans employer la voie de I’élimination, on pourra parvenirc
directement a cette équation en 0, -au moyen de ses racines &,
&, 6", etc. dont ’expression est connue’; car en représeniant cette
équation par

Gm—--: _q'f[‘em—n + UB”}'_J ~—iigles == a,

SCD Lyon 1.
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on aura par les formules connues

T =0 * sl 8 -I-'ﬂ'” - ete,
U = §6" + 06" 4 66" - etc.

etc.

21. On pourra faciliter beaucoup la détermination de ces coef-
ficiens, en les déduisant des sommes des puissances successives
des racines §', 6", etc. jusqu'a la méme puissance. En effet, si on
éleve successivement le polynome

£ 4 af 4 @’ 4 &%E" 4 ete. o an=rEC—D

aux puissances 2tme, 3ime etc, et qu'on dénote par £2, £3, £4, etc.
P s ’ q

les termes de ces puissances, qui ne seront point affectés de la
quantité « , aprés avoir substitué partout 1 pour a™, & poura™*?,
et ainsi des autres; que de plus, on fasse pour 'uniformité

B == £ o £ o £ £ eto o ERT;

ensorte que les quantités 8¢, &, 6", etc. répondent aux racines 1 ;
a, B, etc. il est facile de voir qu’on aura par les propriétés de ces
racines exposées plus haut , mZ°, m&2, mE3, ete. pour les sommes
des puissances 1%, aime, Jime - etc, des quantités ° b, 6", etc.
Or 6° = A™ (n° 17); donc si on retranche respectivement des

quantités mg®, mZ2 , mE3 , etc. les puissances de A™, les restes
mg® — A", mfa — A, mZ3 — A®™, etc. sont les sorames des
m — 1 racines 8, 07, §”, etc. de leurs carrés, de leurs cubes,
etc.; d’olt Von tirera les sommes de leurs produits deux i deus,
trois & trois, etc. par les formules données dans le chapitre I
(n° 8), ainsi qu'il suit:

T = m& — A"

U T(‘mi"—A”‘) 3 mfE2 — A"

2 2

- U(’“E“g— Am) T (mfa — A™) b m,”-Sg-}'E'a

etc.

a2. Maintenant si on fait dans les expresSions des coefficiens
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Ty WV ete, en'x’, 2, a”, ete. toutes les permutations pos-
sibles entre ces racines «', ", elc. on ne trouvera pour chacun
de ces coefficiens que 1.2.3...(m — 2) permutations, provenant
uniquement des permutations entre les 7 — 2 racines 2", x”, ete.

Ainsi on aura pour la détermination de T une équation de ce

méme degré, qu’on pourra former par le moyen de ses racines;
ensuite on trouvera les valeurs des autres coefficiens U, V, elc.
en fonctions rationnelles de T, par la méthode donnée plus baut,
relativement aux coefficiens de I'équation en £ (n° 19).
« Le probléme se trouvera done réduit & la résolution de I'équa-
tion en T du degré 1.2.3. .. (m— 2), laquelle sera toujours d’un
degré plus haut que la proposée, lorsque 7 sera au-dessus de 3.
11 est possible que cette ¢quation puisse éire abaissée & un degré
moindre , mais c’est de quoi il me parait trés-difficile , sinon im-
possible de juger & priori,

23. A I’égard des racines e, B, 7, etc. comme elles sont avec
I'unité les racines de I’équation y» — 1 =0, si on divise cette

¢quation par y — 1 pour en éliminer la racine 1 » on aura l’équa-
tion du degré m — 1.

PP AT g pete, 1 =0,

dont ¢, B, 5, etc. seront les 7z — racines.

Cette équation est d’abord , comme 'on voit, d’un degré moindre
d’une unité que 'équation proposée ; mais étant d’une forme con-
vertible , elle peut toujours s’abaisser & un degré moindre de la
moitié; de plus, par la belle découverte de M. Gauss, on peut
la résoudre a laide d’autant d’équations qu’il y a de facteurs pre-
miers dans 7 — 1, et qui ne montent qu'aux degrés marqués par
ces facteurs. On peut méme la résoudre directement sans passer

par aucune équation intermédiaire, comme on le verra dans la
Note suivante.

24. Nous avons supposé (n° 18) que I'exposant 7 du degré de
Péquation est un nombre premier; considérons maintenant le cas
ou cet exposant est un nombre composé, Dans ce cas, nous avons
vu que les racines de I’équation J" — 1 =0 sont de deux espices;

33
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les unes sont communes & I'équation y"—1=0; n élant um
diviseur de m , et leurs puissances ne peuvent pas représenter toutes
les racines de I’équation primitive, parce qu’elles n’ont de valeurs
différentes que jusqu’aux puissances 7 aprés quoi, les mémes
valeurs reviennent toujours dans le méme ordre ; les autres n'ap-
partiennent qu’a I’équation y™—1==0, et jouissent des mémes pro-
priétés que les racines de cette équation , lorsque m est un nombre
premier. Ainsi, il faudrait d’abord borner le raisonnement du
n° 18 , aux seules racines « , qui sont propres a l'équation
m — 1 = o, et modifier en conséquence les conclusions que nous
en avons déduites relativement 4 I’équation en £. De plus , en
n’employant méme que ces racines pour «, on ne peut pas dire
que la substifution d'une puissance quelconque de o a place de «
dans la série a, a*, o&®, etc. "', redonne toujours les mémes
termes , parce que $i m = np, la substitution de a* pour o, ne
donnera jamais que les puissances «", ™, etc. a%, a cause de
av — 1. 1] résulte de 13 que les quantités £, £", £", etc. ne pour-
ront plus étre les racines d’'une méme déquation, mais devront
dépendre d’équations différentes qu'il faudrait ehercher séparé-
ment , ce qui alopgerait le calcul.

Mais en employant les racines communes a I"équation y"—1=0,
la méthode générale se simplifie, et la résolution du degré m, se
réduit & celle d’autant d’équations des degrés inférieurs 7z que 'expo-
sant m a de facteurs premiers; c’est ce que nous allons développer.

25. Supposons donc que ’équation m ait un diviseur 72 ; nous
avons vu (n° 7) que toutes les racines de I'équation y"—1=0
sont communes & I'équation y™— 1 =0; ainsi dans la fonction

t = a2 4 ax’ + a*z” = ete. 4 a2,

nous pourrons prendre pour = une des racines de Véquation
y*—1=0. On aura alors a* =1, &7 *=ga, a""*=a’, ctC.
@ =—=1, &+ = a,; "t =a’, etc. jusqu'a «" = 1; €t I'ex~
pression de 7 se réduira 4 cette forme plus simple

i = X + aX" 4+ a*X" 4 et -+ ar—1X,
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en faisant pour abréger

X' 2 - 2D gl L ete, o 2D

X” I."’ __+_ .z[rz-}—n) + m(nn+2) __l__ ete. + _l.(m—n-i-ﬁ)
w T _("+" : 3 ] —_

X a2’ = a0+ 4 2CrF) o ete, o= 2D,

etc.

X® = g0 = 200 - 26D L etc. - ™,

Regardant maintenant les quantités X', X', X", etc. X comme
les racines d’une équation du degré n, il est clair qu’on pourra
appliquer a la fonction £ les mémes raisonnemens qu’on a faits dans
lesn 15 et 16, et qu'on parviendra a des conclusions semblables.

Ainsi, en faisant #* =90, on aura, a cause de «"= 1, une
expression de 0 de la forme

§ = & 4 af’ 4 " 4 etc. <4 AR -l

dans laquelle les quantités £°, £, £, etc. seront des fonctions
connues de X', X", X, etc. lesquelles auront la propriété d’étre
invariables par les échanges simultanées de X’ en X', X" en X', etc.
X® en X',

Connaissant ces quantités, on aura immédiatement les valeurs
des racines X', X", X", etc. par des formules semblables & celles
du n° 16. :

Ainsi, en prenant 1, 2, B, etc. pour les racines de I’équation
4" —1=03 et supposant que 6°, §, 0", etc.soient les valeurs
de 8 qui répondent & =1, 2, B, 3, etc. on aura

n

x = VELVIL YTt

R U Y il e 0

n

X" — V4 ame Ve 4 g V& + etc.
n

}
efc.

n
ot 'on remarquera que le terme /6° est toujours égal a Ja somme
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des racines qui est ici

X 4 X' 4 X" + ete. = &' - a" 4+ 2" 4 etc. = A.

On n’aura encore par la que les racines X/, X’, X”, etc. ; pour
avoir les racines primitives 2, 2, 2", ete. il n’y aura qu'a re-
garder séparément celles qui composent chacune des quantités X/,
X, X", ete. comme les racines d’une équation du degré égal au
nombre de ces racines, et y appliquer la méme méthode.

26. Lorsque 7 est un nombre premier , ce qu’on peut fonjours
supposer en prenant pour 2 un des facteurs premiers du nombre mz,
les quantités £, £", £”, etc. seront, comme dans le n° 18, les
racines d'une équation du degré n — 1, dont les coefficiens dé-
pendront d’une équation du degré 1.2.3... n — 2. Cette derniére
équation aura pour coefliciens des fonctions rationnelles de ceux de
I’équation en X dont X', X', X", etc. sont les racines, Or ceux-ci
ne sont pas connus; il n’y a que ceux de I'équation donnée dont
2/, x', 2", etc. sont les racines, qui le soient; il sagit donc de
voir comment ceux-la pourront dépendre de ceux-ci.

Il est clair qu’en substituant pour X', X', X", etc. leurs valeurs
en x', x', 2", etc. les coefliciens dont il s’agit deviendront des
fonctions connues des racines 2/, 2", 2", efc.; et pour trouver les
¢quations d’ol1 ces fonctions dépendront, la difficulté se réduira
a chercher de combien de valeurs différentes ces fonctions seront
susceptibles par toutes les permutations possibles entre les racines
&, @, &5, -etc: a™ '

27. Le nombre total des permulations entre ces 7 racines, est
en général 1.2.3... m; mais ¢'il y a des permutations qui ne
produisent aucun changement dans les fonctions dont il s’agit, il
fandra diviser par le nombre de ces permutations le nombre total
des permutations, parce que chaque permutation se combinant
avec toutes les autres, ne s’ajoute pas aux autres , mais les mul-
tiplie.

Or les racines ', 20+?, ete. ™"+ qui entrent dans I'expres-
sion de X', et qui sont au nombre de p, A ¢ause de m = np,
sont susceptibles de 1.2.3...p permutations ; mais comme elles
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entrent dans X’ sous une forme invariable , leurs permutations ne
produisent aucun changement dans la valeur de X5 par conséquent
on aura d’abord le diviseur 1.2.53. . . oA

L’expression de X" étant dans le méme cas, donnera de nouvean
le diviseur 1.2.5, | P 5 de sorte qu’on aura le diviseur (1.2.3. . P
a raison des deux fonctions X’ et X’ par la méme raison, les
trois fonctions X', X" X* donneront le diviseur ' e e P), et
les  fonctions X', X", X", etc. X® donneront par conséquent le
diviseur (1:3.5.70 pnuir . T0d :

¥nfin les 72 quantités X', X', X”, efe. sont susceptibles en elles-
mémes de 1.2.53, ., 5 pertmutations; et comme les coefficiens de
Téquation en X sont des fonctions invariables de ces quantitds, il
en résultera encore le nouvean diviseur 1,2.5... 7.

Droti 'on peut conclure que les coefficiens de cetfe €quation, re-

gardés comme des fonctions des m racines Z', ', 2" ete. , ne seront

PiE m ¥ s 4 y
TEBTT K (LAE valeurs différentes,

et ne dépendront par conséquent que d’une équation de ce degré.
- Ainsi les coefficiens de I’équation du degré. 1.2.53

qui sont des fonctions rationnelles de, ceux, de 1'équati
dépendront d’une équation de, ce degré.

susceptibles que de

Donc, en donnant & ces coefficiens, toutes les valeurs qui ré-
pondent aux racines de cette dernicre équation , et multipliant
ensemble toutes:les équations'ré_sultantes, on aura enfin une équa=

. : Toaoq it e ; .
: : - —— 23055 B e
tion du degré DI R (L5 psitk vea n 5 savoir

c 1)n o 5’" Sy ce sera l’équ:at'ion d’ott dépendront les coef.

ficiens de I'équation en £ du degré 7 — 1, dont les racines seront
les valeurs de £, £", ", etc. Ainsi on peut dire que c’est A une
équation de ce degré que la résolution de Iéquation proposée
se réduira en derniére analyse, o :

28. Pour achever la résolution 'de Péquation proposée en
il faudra encore tirer les valeurs de ses racines o, ', 2%, ete, zm
de celles des racines X’, X*, X"," e\ (e 35Y. « Pond'coly -
on regardera les p racines @', 2+, efe qui composent la
valeur de X', comme dtant les racines d'une équation du pime

-l

f
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degré , et qui sera de celte forme

2 Kip— - AP — pP T - paP —4 = efc. == 0,

dans laquelle les coefficiens A, p, v, etc. seronf inconnus j; mais
comme cette équation est censée renfermer p des m racines de
P'équation proposée

2 = Azt 4 Bam=2 — Cam=? - etc. = 0,

ot m = np , elle devra &tre un diviseur de celle-ci; par consé-
quent il n’y aura qu’a faire la division ordinaire , en supposant
nuls les termes affectés de a7, 277, ete. dans le reste. On aura ,
par ce moyen, p équations en X', A, g, etc. dont les p — 1
premieres donneront les valeurs de A, g, etc. en X', par des
équations linéaires. Alinsi X’ étant connu , on aura aussi A, &, etc.
et il ne s'agira plus que de résoudre cette équation da degré p.
De méme , en substituant la valeur de X" a la place de celle de w .
on aura I’équation qui donnera les racines a”, x@+H, x@+, etc.
et ainsi de suite.

2g. On voit par 12 que cette derniére méthode revient 3 dé-
composer 1’équation du degré m=np en n équations du degré p;
mais si pour cette décomposition on suivait la méthode ordinaire,
il faudrait résoudre une équation du degré
m(m—1)(m—2)

1 e aR el L P

comme nous Vavons vu dans la Note X; au lieu que celle-ci ne
demande que la résolution du degré

1.9. 50 m
(n—1)n(1.2.3....p) ?
qui est tonjours moindre que le précédent.

Soit m=14, n=2, p=2, ces degrés seront
4—-§_6 ¢ 1.2.5.4_5

B S 2 s

Soit m=6€, n=2,p=3, on aura
6.5.4 it a R hsB B,

o it SMBETY ST P el
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et si on fait =3, p=2, on aura
6.5 - Y.a.2 456
Beh 0. 3, 2.0C1.9F . 135

et ainsi du reste.

0. Appliquons la théorie précédente aux équations du second ,
du troisitme et du quatriéme degré.

Soit d’abord 1’équation du second degré
x* — Ax + B = o,
dont les racines soient x’ et «’.

On a ici m = 2, qu'on peut regarder comme un pombre pre-

mier; prenant pour o une racine de l'équation y*~— 1 =0, on
fera

t = 2’ =} ax’,
d’ou 'en déduit
= 1* = 2* + 2™ =} 2222,
3 cause de a* = 1; done £ == 22’2’ fonction invariable des ra-
cines &’ et x'.

En effet, on a B= 2’2", et par conséquent £’ = 2B. Or ’équa-

tion y* — 1 =o0 donne y =1, —1; donc a=— 1,et(n®17)
§ = A* — 2%’ = A* — 4B. Ainsi les expressions des deux racines
seront (n% 16, 17)

) A YL A= 4)

2

2 A= v(ar—By

2

x

comme on le sait depuis long-temps.
31. Soit maintenant 1’équation générale du troisitme degré
x* — Az* 4+ Bx — C = o,

dont les racines soient z’, 2", 2"

On a ici m = 3 nombre premier; la fonction 2 sexa donc »
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en prenant pour ¢ une racine de y* — 1 =0,
= a -+ ax’ -4 22",
et la fonction A =7° sera, i cause de &’ =1,

: 9=§°+af’+a‘£”,
ou l'on aura
x’s + xﬂg + wmg + foxffxw
3(xz" = a™x" -+ &)
L] S(x.rgxw + wﬂgwl + xwzwﬂ).

Les quantités £/, £ seront done les racines d'une équation du-
second degré , dont les coefficiens dépendront d’une équation du
degré 1.2.. .m — 2, c’est-a-dire du premier degré, et qui seront
par conséquent des fonctions rationnelles de ceux de I’équation
proposée. En effet, on voit'que par toutes les permutations possibles
entre les trois racines o', 2", =", les deux fonctions &', Z" restent
les mémes, ou se changent 'une dans l’autre ; de sorte qu'en les
supposant racines de I’équation y

g — Mg+ N=o,

on aura M = &' -4-£", N =££" fonctions invariables de ', 2, 27,
et par conséquent déterminables par les coefficiens A, B, C de
la proposée, :
¥n eflet, on trouve facilement par les formules de la Note X
(n° 4)
M o= Bl SAR = 06
N = £% =9gB*+49(A? —6AB) C+ 8:1C.

Ainsi on n’aura & résoudre que I’équation du second degré

g — (BAB—gC) £ + 9B’ +9(A*—6AB) C+8:C* =0,

dont on; prendra les deux racines pour les valeurs de 2 et £,
Faisant ensuite (n° 17) :
¥ = A% (& —1) E ok (ativinen) 8]
= A (B—1)E +(B—1)E,
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et substifuant dans les formules du n* _16; 3 an lien de m et A

3o
au lieu de V& (n° 17), on aura

< Sy & 15 = 3
¢ A+ VYV T x,_A+\/6'+vE”
3 Ty 3

gL e el - il

__A+u“|/fv’_+3‘l/ﬂ”?ou bien<xn A+B VYV +ayy
3 ‘ B

3ia - SR 3

At a VT 4+ 2V : o_ Ada Vi 8y

—

= 3 2 xr = 3

: ] L
a cause de 8 =—a*, et par conséquent * = .

Et les deux quantités « , £ seront ( n°® 23 ) les racines de
I'équation y* 4+ y 4+ 1 = o0, laquelle donne
o_omed F =3 L e Y §
s e Ll S e
32. Mais on peut avoir des expressions plus simples par le moyen
de I’équation en 6 qui sera ainsi du second degré.
En représentant cette équation par

92 = T9+ U = 0 »
on trouvera les valeurs de T et U par les formules données plus
haut (n° 21).

On aura ainsi
T = 38 — A?
U T(P—AY) _ 3Ea— A

2 2

2

ou £2 est le premier terme dégagé de o dans le développement
de (£° = %"+ «*£" )*; el 'on trouve , & cause de o® =1,
Ea = (E) + 2%
Or on a (0°17) £ =A’—§& — & = A’—M; donc puisque
£'¢"=N, on aura
T = 2A® — 3M,

» 5 —M)* 46N —AS
U=% i3l Bl )2-1— ;
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et substituant les valeurs de M et N trouvées ci-dessus, on aura

T — 2A% — gAB + 27C
U = A®*—9gA“B + 27A*B* — 27B = (A* — 3B)%.

L’équation en 8 sera donc
8* — (2A° — 9AB 4 27C) 6 4 (A* — 3B)’ = o,

dont les deux racines étant prises pour & et §', et substituées dans
les expressions précédentes de «', ", «”, etc. on aura la résolu-
tion la plus simple de I’équation du troisiéme degré.

33. Venons a l’équation du quatriéme degré représentée par

la formule
xt — Az’ 4= Bx* —~ Cx 4+ D = o.

Comme on a ici 4 = 2.2, il est plus simple de snivre la mé-
thode du n® 25; en faisant 7 — 2, on prendra pour « une racine
de I'équation y* — 1 = 0, ensorte que «* =1, On fera ainsi

=X aX', X' =2 2", X' ="+ 2"
De la, on aura
0= g + af et £ = X* 4+ X", & = 2X'X".
Ainsi Péquation en £ dont £’ est racine, ne sera que du degré®
7 — 1, c'est-a-dire du premier degré, et ses coefficiens ne dé-
1.2.3.4 ’
= il (n° 27); de-

sorte que l’on aura en £’ une équation du troisiéme degré, telle
que

pendront que d'une équation du degré

g8 — Mg* 4+ Ng — P = o.
Les racines de cette équation seront les valeurs de
zf o 2X’Xﬂ — 9 (xl + mm) (x' + xll")

qui proviendront des permutations entre les trois racines; et il
est facile de voir en effet que ces valeurs ne seront que les trois




N T3 X T 1DT
sulvantes :

_2(‘2.;' + m"’)(m" _|_ mt')
2(x 4 2") (2" + x'7)
2(x' - a™) (2" + 27).

Draprés ces racines, on pourra former les coefficiens M, N, qui

se trouveront exprimés par des fonctions invariables de 2, &',
m

", x'*, et seront déterminables en A, B, C, D.

34. Pour faciliter cette recherche, nous remarquerons que l’on a
par I’équation proposée

B x" v X" = T2 e " = T - a2z
(' 4 2") (2" 4 7)) = 2’2" 4 2"z
(' 4+ 2") (2" + x7) 4 22" + 2"z
(' + av) (2" + 2" ) + 2" 4 2"2";

d’ol1 il suit que si on fait £ = 2B — au, I’équation en £’ se trans=
formera en une équation en z dont les racines seront

" 2Ty XX a2y T - 2,
Soit
2 — Ru* =Sy — T = o

cette équation en z, on aura
R = 22" + 2’2" o 22" ++ 2"z = 2’2" 4= 22" = B,

et 'on trouvera de la méme manitre , en employant les formules
données dans la Note X, les valeurs suivantes :

S=AC—~4D, T=(A*—4B) D 4 C~
Désignons par z’ une quelconque des racines de I'équation en u,
#—Bu 4 (AC—4D)u— (A*—4B) D — C =o,
on aura £ = 2B —2u'; et de 1a, en faisant e =— 1 et 772,
on aura B = A* —2F = A* — 4B - 44,
et enfin X’QA+VFl XT;A—_-KE:.
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55. Maintenant, comme X' = «’ -~ «”, on peut regarder x’ et «”,
comme les deux racines de I’équation du second degré (n° 28),

z* — Xz - A= 0;

et pour avoir A, il n’y aura qu’a diviser I’équation proposée du
guatrieme degré par celle-ci, le premier terme du reste égalé a
zéro , donnera

Koz AW X oY

£, oX/ = A ?

ainsi, en résolvant I'équation du second degré, on aura

X a X =

e KA VX =) e X ch'?'—m;

et comme X' = x" -} x'%, on aura les racines ', z'", en chan-
geant dans ces expressions X’ en X", ce qui ne demande que de
changer le signe du radical V/#'.

Cette solution revient a celle de Descartes, dans laquelle on

résout ’équation du quatrieme degré en deux du deuxieme, moyen-
nant une du troisieme,

36. On peut simplifier ces formules en substituant d’abord
— : = 2. 3 r .
: A4+"é_ a la place de u, ce qui donnera cette équation en 8,

65 — (3A* — 8B) 68° 4 (5A+ — 16A*B - 16B* - 16AC —64D) 8
— (A’ — 4AB4-8C) =0,

dont 6 sera une quelconque des racines & volonté; mais en em-

ployant les trois racines, on peut avoir tout d’un coup les quatre
TROINCS Fy 'y By s

Car en faisant a=—1, on a
=& " — 2 — 2"y
et par conséquent
§ == (" -+ & — " — 'Y

Cette expression de 8 n’est en effet susceptible que de ces trois
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valeurs différentes
(242" —2"— 2 ), (o 2" — 2" — "), (' i s
qui seront par conséquent les trois racines de 1'équation en .

Nommons §, §", 6” les trois racines de cette équation; on aura
donc ces trois équations

2" — 2 — v VI
x o 2" — 2" — vV
& s - 3 — " v

qui, étant jointes a 1'équation
’ Jr m ‘
X+ ax + 2" - 2V = A,

laquelle répond & e =1, serviront & déterminer chacune
quatre racines ', &', =", £', et ’on trouvera

¢ A+ VL VT VE

—— 4 i
P AT YTy

'Y 4

.Zm = A 4 ‘/97— ‘/.9-7'—' ‘/BT‘
4

e A= VI— VT 4+ V&
Z .

37. Cette solution, la plus simple de toutes, est due & Euler;
mais elle présente une espéce d’ambiguité, a cause des radicaux
carrés qui peuvent étre pris chacun en plus et en moins. En effet,
on voit qu’en changeant le signe d’'un quelconque de ces radicaux,
ou les signes des trois radicaux a-la-fois, on a un autre systeme
de racines, représenté par les formules

i A WGy WO
T 4

_ AT VTV Y
73

_ A—VFL VT 4+ VP

X

X

4
_AF VI VT —
4 4

'
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Au contraire, en ne changeant a-la-fois que les signes des deux
radicaux, on a toujours le méme systéme de racines. Ainsi, pour
savoir lequel des deux systémes il faut employer, il n’y a qua

S

déterminer le signe que doit avoir le prodnit VE < VI < VI

Or I'équation en 6 donne
§ =< § x 8" = (A% — 4AB -} 8C)*;

donc extrayant la racine carrée

e e T T

VE x VI x VB = == (A’ — 4AB +8C),

et remettant pour \/97, vy, \/H_’” leurs valeurs en 2/, «', etc.

(& 42" — " — ") (£ F-2" =2 =) (& 2" — 2" —a")
— == (A’ — 4AB - 8C).

Pour déterminer le signe ambigu, il n’y a qu’a considérer un
cas particulier, par exemple celui ol les trois racines 2", &", &
sont nulles. Dans ce cas,on aura A =a', B=o, C=o0, D=o,
et I’équation précédente deviendra ® = == A®, par ol I'on voit
quil faut prendre le signe supérieur pour la rendre identique.
Ainsi on aura nécessairement

VI < VI x VI = A® — 4AB + 8C,
D’ou Pon doit conclure que lorsque la quantité

A® — 4AB + 8¢,

aura une valeur positive, il faudra employer le premier systéme
des racines; et que lorsque cette quantité aura une valeur négative,
il faudra employer le second systéme , en donnant toujours aux
radicaux VB, V8", V4" une valeur positive.

58, Passé le quatritme degré, la méthode, quoiqu’applicable
en général , ne conduit plus qu’a des équations résolvantes de
degrés supérieurs 4 celyi de-la propasée.

Pour le cinquitme degré, soit la formule générale
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dont les racines soient &', ", 2", ', a'.

On aura ici m =5 nombre premier, et 1'on fera
t = a’ 4 ad’ 4 orx” 4 alz’” 4 atx',

ol o est une des racines de ’équation y> — 1 = o, autre que
Punité.

On fera ensuite § =75, et ’on parviendra & une équation en 8
du degré 1.2.3.4, mais qui sera décomposable en 2.3 équations

chacune du quatriéme degré; de maniére qu’en représentant cha-
cune de ces équations par la formule

6t — T6 + Ub* — X 4+~ Y = o,

les coefficiens T, U, etc. ne seront susceptibles chacun que de
six valeurs différentes, par toutes les permutations possibles enire
les cinq racines @', 2, 2", z'Y, =", dont ces coefliciens sont fonc=
tions; et ces six valeurs ne dépendront par conséquent que d’une
équation du sixieme degré; de sorte qu’en derniére analyse, la
résolution de I'équation du cinquieme degré serait réduite i celle
d’une équation du sixieme. Il est donc inutile d’entreprendre ce
calcul dont on peut au reste voir le commencement dans les
Mémoires de ’Académie de Berlin (année 1771, p. 130 et suiv.).

39. Nous n’avons considéré jusqu’ici que des fonctions résol-
vantes de la forme &'—-aa'4 a’x” - etc. ; mais les principes que
nous avons employés pour trouver directement I’équation dont ces
fonctions seraient les racines, peuvent s’appliquer i toute auntre
fonetion des racines z', x”, 2", ete. de 1’équation proposée. 11
ne s’agit que de chercher toutes les différentes formes dont la
fonction proposée est susceptible par toutes les permutations des
racines z', &', x”, etc. entre elles, et former nne équation qui
ait toutes ces différentes formes pour racines. Les coefficiens de
cette équation étant des fonctions invariables de ses racines, seront
aussi des fonctions invariables des racines de la proposée, et pour-
ront par conséquent se déterminer par des fonctions rationnelles
des coefliciens de celles-ci, qu’on trouvera toujours par les formules
données dans la Note X,

SCD Lyon1 |
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On pourrait croire que chaque fonction différente des racines
d’'une méme équation, dépendrait aussi d’une équation différente
cela a lien en effet pour toutes les fonctions qui ne sont pas sem-
blables , mais pour celles que j’appelle semblables, et dont la
propriété consiste en ce que, par les mémes permutations, elles
varient ensemble, ou demeurent les mémes, on peut les faire dé-
pendre toutes d’'une méme équation, parce qu’on peut toujours les

exprimer. par' des fonctions rationnelles d’une quelconque d’entre
elles.

J’aidonné dans les Mémoires de Berlin, de I’année 1771 (p. 203
et suiv. ), une méthode générale pour la détermination des fonc-
tions sembiables des racines d’une équation quelconque donnée;
je ne la rapporterai point ici, pour ne pas trop alonger cette Note.

40. Mais je ne saurais la terminer , sans dire un mot du bean
travail “que fen Fandermonde a donné dans les Mémoires de
PAcadémie des Sciences de Paris (année 1771) , sur la résolution
générale des équations. Son Ouvrage et le mien ont été composés
et lus & peu pres en méme temps, 1'un 4 ’Académie des Sciences
de Paris, et 'autre & celle de Berlin. Pandermonde , en partant
d’un principe général , est arrivé a des résultats semblables 4 ceux
auxquels m’avait conduit 'examen des différentes méthodes connues

jusqu’alors. Comme ce rapprochement est intéressant pour I'analyse,
on sera bien aise de les trouver ici.

Le principe dont il s’agit est que ’expression analytique des
racines’ d’une équation doit étre une fonction de cesracines, telle
qu’elle puisse égaler indifféremment chacune des racines, et qui
ne soit’ qu'une fonction de ‘lear somme, de la somme de leurs
produits deux & deux, de celle de leurs produits trois'a trois , et
ainsi’' de suite, afin que cette fonction puisse en méme temps se
déterminer par les seuls coefficiens de I’équation donnée.

41. En examinant , conformément & ce principe , la résolution
connue de 1’équation du second degré ,: Fandermonde observe que
la fonction qui donne cette résolution est de la forme

S Lt S
2

0
=
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a et b étant les deux racines de I'équation., En effet, & cause de
Pambiguité du radical carré, cette expression devient indifférem-
ment @, ou b, et en méme temps les deux quantités @ - b et

(@ — b)* sont exprimables par les coefficiens de I'équation
x*— Ax 4 B = 0; car on a

@b0=A,(a—D)y=a’+b—20b=(a+ by —4ab=A*—/B;

i r - =+ ?—
ce qui donne la résolution connue 2 ‘/(j LLD%

L’anteur applique ensuite le m&me principe aux équations du

troisitme degré, et il trouve que la fonction qui donne leur
résolution, peut se réduire 4 la forme

a+b+c+[,?'/(a+r"b+r"c)3+ 15’(0:-{-3‘”5 +7¢)8
3 7

ou a, b, c sont les trois racines de I'équation, et #, 7" les valeurs
qui satisfont avec I'unité , & I’équation 7* — 1 —o. En effet, cette
expression devient d’abord égale 4 a, a cause de 17— '— 03
ensuite, comme chaque radical cube peut é&ire multiplié par #’
ou 7', la méme expression deviendra 4, on ¢, en multipliant
les deux radicaux par 7 et 7", ou par 7" et 7', & cause de " =7
(0°5). De la ¥andermonde conclut que pour un nombre quelcon-
que 2 de racines, la fonction qui deviendra indifféremment a,
ou b, ou ¢, etc. sera de la forme

-;—1- (a0 c +etc.)+\“‘/(a+r’b+r”c+etc.)"
- ‘n;(a-l— 7*b—-r"c—-etc.)" - :i/(a-;—r’sb-i—r”c ~-ete. )"}~ etc.

v, 1", 1", etc. étant avec 'unité les racines de "équation 7" — 1 —o;

Sion compare cette expression a celle de la racine «* dun° 16,
on verra facilement leur accord, en considérant que § est en gé-
néral = (&' 4+ a2’ -4 a*2” - ete.)" (n° 15), et que @, 6", etc.
sont les valeurs de 6 qui répondent aux racines a, 8, 5, etc. de
I’équation y™ — 1 =0, lesquelles sont désignées par 7, 1", 7", etec.
dans I’Analyse de Pandermonde, et que lorsque m est un nombre
premier , toutes les racines sont représentées également par i, a,
a*, o, efc, par 1, B, 3, £°, etc. (n° 5). o

2
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Pour déferminer les valeurs de (@ 476 - r'c - ete.)" en fonc-
tions des coefficiens de I’équation donnée , en quoi consiste toute
la difficulté du probléme, I’Auteur emploie un algorithme ingé-
nieux , fondé sur une notation particuliére; il ne cherche pas 4
priori , comme nous I’avons fait, le degré de ’équation d’on cette
détermination doit dépendre; mais il donne pour les équations du
troisieme et du quatrieme degré, leur résolution compléte; et pour
celles du cinquitme et du sixiéme degré, des formules générales
qu'il appelle types, et qui font voir que la résolution de I'équa-
tion du cinquiéme degré, dépend en derniére analyse d’une équation
du sixitme , et que la résolution de celle-ci dépend de celle d’une

équation du quinziéme ou du dixieme degré, comme nous I’avons
trouvé,

42. Vandermonde a aussi remarqué les simplifications dont la
formule générale des racines est susceptible dans les degrés dont
I'exposant est nun nombre composé; par exemple , il trouve que
pour les équations du quatrieéme degré, les racines ¢, &, ¢, d
peuvent étre représentées par la fonction

i(a+b+ctd+y(at+b—c—d)
+V(@adc—b—dyr4v@+d—b—cy),

en prenant les radicaux carrés en plus et en moins, et il en déduit
la résolution donnée plus haut (n° 36).

Comme la méthode de Pandermonde découle d’un principe
fondé sur la nature des équations, et qu’a cet égard elle est plus
directe que celle que nous avons exposée dans cette Note, on
peut regarder les résultats communs de ces méthodes sur la ré-
solution générale des équations qui passent le quatriewe degré,
comme des conséquences nécessaires de la théorie générale des
€quations,




NOTE XIV:

Oi Pon donne la résolution générale des équations a
. deux termes.

I. QUOIQUE les équations & deux termes telles que a2 —A=o,

ou; plus simplement & — 1= o (puisque cette forme-la peut se

) ~
réduire 4 celle-ci, en y mettant £ VA pour x), soient toujours
résolubles par les tables des sinus d’une maniére aussi approchée
qu’on puisse le desirer , en employant la formule connue

oo iSGo“ -}~ sin i 560° X V—1,

et faisant successivement » = 1, 2, 3, etc. m, leur résolution
algébrique n’en est pas moins intéressante pour I'analyse ; et les
Géometres s’en sont beaucoup occupés. Ils ont d’abord réduit la
difficulté a résoudre les équations dont le degré a pour exposant
un nombre premier , comme nous P’avons vu au commencement
de la Note précédente. Ils ont trouvé de plus que comme I’équation

- . 1 — o0 a nécessairement 1 pour l'une de ses racines, en la
divisant par x — 1, on a pour les antres Iéquation du degré

B AL ]

g TR ke e al +etc.+1=0,

laquelle étant du genre des équations qu'on appelle réciproques,
parce qu'elles demeurent les mémes, en y changeant x en ‘5 , est

décomposable en E—_ équations du second degré, telles que

o T

il
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@' —yx -1 ==0, dans lesquelles y dépend d’une équation "du

degré “—_ de la forme -

2

PR s SV Bl L, S Y iy
o LD O i
2

- gtov' =20,

\ —
ol ¥y = ‘MT, comme nous l’avons vu dans la Note X (n° 14).

De cetté manitre on avait pu résoudre Péqnation 27 — 1 — o ,
parce quelle se réduit & une équation du froisicme degré ; mais
on était arrélé & I'équation " — 1 =0, qui ne se réduit par ce
moyen qu’a une du cinquiéme.

2.'On'en était i lorsque M. Gaubs donna, en 1807, dans son excels
lent Ouvragerintitulé Disquisitiones-arithmetice (*); wie méthode
aussi originale qu’ingénieuse pour réduire la résolution de I'équa-

tion & —1==0, lorsque u est un nombre premier, 4 la résolution
d’autant d’équations particulitres que le nombre u — 1 contient
de facteurs premiers, et dont les degrés soient exprimés par ces
mémes facteurs, Ainsi I'équation &'* — 1 =0 ne demande que la
résolution de deux équations du second , et d’une du troisi¢me ,
parce que 13—1==2,2.5. L’équation 2" — 1 =0 ne demande que
1a résolution de guatre équations du second degré, et ainsi de suite,

Mais .en; appliquant les principes de la théorie de M. Gauss
a la méthode exposée dans la Note précédente , J’ai reconnu qu’on
pouvait 'p.l;;f.‘t‘:ni‘l:dfi;e"c:tpme:nt la résolution complete de toute équa-
tion 3 deux termes dont le degré est exprimé par un nombre pre-
mier, sans passer par aucune équation intermédiaire, ni avoir &
craindre Pinconvénient qui naft de 1"ambiguité des racines., €’est
céique ‘je vais développer'dans cétte Note!

3. Soit I"équation a résoudre = — 1 = o, x étant un nombre
premier ; 8i on’ en -$épare la racine = 1, elle s’abaisse A celle-ci
du degré u — 1,

f—1

ke At ™ ey N -+ ete. 4 1 = 0.

(¥) Cet.Quyrage vient d’étre traduit en frangais; sous le titre de Recherches
arithmétiques , chez Courcier:
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Soit 7 un.racine quelconque de cette équation,, on: pourra repré-
senler ses w — 1 racines par les. termes de la série géométrigue

13
i

et 1
rayeriaarorts ate, r . e

comme nous 1'avons démontré dans la Noteé précédente’ (n°'5);

M. Gauss a en I'idée ingénieuse et heureuse de subtituer ' a la
progression arithmétique des exposans de r, une progression géo-
métrique , 'en vertu du fameux théoréme de Fermat, sur’ les nombres
premiers.

Par ce théoréme démontré d’abord par Ewler, et ensuite par
tous cenx qui se sont occupés de la théorie des nombres, on sait
que si s est un nombre premier, et ¢ un nombre moindre que u,

M-—

1 . e
le nombre a — 1 sera nécessairement divisible par w , desorte

R e —1 : .
que le reste de la division de at par: m, sera Vunité, :

Euler a démontré de plus que si en divisant tous les termes

: —1 ¢ OF, ¢ €
de la progression @, a*, a°, etc. a* par », il se trouve d’an-
tres puissances de @ ‘qui ‘donnent ‘aussi ['unité pour reste, les
exposans de ces puissances, seront nécessairement des diviseurs de
# — 1. Desorte que pour savoir si parmi les puissances'de a

- A =71 . R ) ol ep
moindres que & , il y en‘a aussi qui étant divisés par u ,

donnent le.reste 1, il suffira d’essayer celles dont I’exposant sera
un diviseur de p — 1.

4. On nomme racincs przmz.'wr’.s' les mombres '@ dent aucuue
i

puissance moindre que a "ne donne le reste 1 pat- la d1v1smn
par p; et ces racmes ont la proprletc que tous les termes de la

progression a, a?, @y dtelg et < étant; dwnﬂes par vy donnent
des restes différens, et donnent par conséquent tous les nombres
moindres que p pour restes, pu]s(]ue ces restes sont au- nombre
de p— 1.’ Car si deux puissances a" , @7 dnnn.nent le meme reste,
7 et p étant < p, ef p <7, leur (]]ﬁ‘t?!f'll(‘&’ a"— af = uP(;z" P—1)
serait nécessairement divisible par'2,’mais ¢ n’étant pas divisible,
et w étant premier ; il faudrait ‘que @"=P'— 1 le fit; donc il y
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aurait une puissance ¢*—* moindre que e ' qui dennerait I’unité
pour reste ; par conséquent & ne serait pas racine primitive , contre
I’hypothese.

On n’a pas, jusqu'a présent, de méthode directe pour trouver
les racines primitives pour chaque nombre premier; mais on peut
toujours les trouver facilement par le tidtonnement. Euler en a
donné dans les Commentaires de Pétersbourg ( Tom. XVIII),
une table pour tous les nombres premiers jusqu’a 37, que mnous
placerons ici.

7 @

3
5
7
II Ty e

13 75 L1

17 6atimy sz gy

19 Y0, ‘15, 14 ;715

a3 10, 13 15 el . 17, 20, 21

29 B JO a1 f 18, 19, 21, 26, 29
31 ILy X2, 13, 17, 21, 22,24

87 | 32, 5, 13, 15, 17, 18, 19, 20, 22, 24, 32, 35

o I'on remarque que le nombre de ces racines primitives , pour
un nombre premier u donné , est toujours égal i celui des nombres
moindres que ., et premiers & w — 1. On peut voir sur ce sujet
la section troisieme des Disquisitiones arithmeticee.

Au reste, pour notre objet, il suffira de connaitre une seule
des racines primitives pour un nombre premier donné, et il sera

toujours plus avantageux pour le calcul d’en connaitre la plus
petite.

5. Soit donc z une racine primitive pour le nombre premier «,
de maniére que les 4 — 1 termes de la progression géométrique

a,a’, a*, ete. &

' étant divisés par # , donnent pour restes tous
les nombres moindres que w, dont 'unité sera le dernier; il est
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facile de voir que les w — 1 racines 7, r*, 7, ete. 7! (1 3)
pourront aussi, en faisant abstraction de I'ordre, étre représentées
" par la série

2] B pr—2
P dr et T o oeke .

Car comme on a par I’équation 2" — 1 = o0, dont r est supposé

racine, =1, il est visible qu’a la place de chaque puissance
A .
de r, comme r", lorsque A > w, on pourra toujours prendre

la puissance ', ol v sera le reste de la division de A par ps
Ainsi dans la série précédente, on pourra toujours réduire les
exposans de r a leurs restes aprés la division par wx, restes que
nous avons vu comprendre tous les nombres 1, 2, 3, ete. jusqu’a
p— 1, mais dans un ordre différent de ’ordre naturel , ce qui
est ici indifférent pour les racines r, 72, 7°, etc.

L’avantage de cette nouvelle forme des racines consiste en ce
que si dans la série des racines

2 3 { p—2
TN T Ay L R S

on met 7 3 la place de r, elle devient
2 3 4 5
hoeedage T 18%0,srissumetteg 2y

et si on y met  ala place de r, elle devient

aﬁ

a
o i i+ | L

et ainei de suite.

En effet, il est visible que par la substitution de 74 la place

a 2 - 2 3

de r, % devient (r®)*=r%, r® devient (#*)* =1, etc. et le
) . grria iyt

dernier terme devient (v*)“ 1 P = r, a cause que le

p—1

aprés.la division par w, est l'unité.

reste de a

Yloe arfs ¥ a’ . a’ .
De méme, par la substitution de 7~ au lien de 7, r devient

(# Pros r®, r* devient (r o @_L_ etc, I’avant dernier terme
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ph—3 N o, —3 e | < A
7¢ deviendra (%)% "~ =1° =7, le dernier deviendra

o ®—2 7 «.le @
(r*)* T =r% =r%, a cause que le reste de la division de &*

par p est @, puisque " =axa"T, et que le reste de la di-

. L—1
vision de &' est 1.

6. Cela posé , si pour résoudre ’"équation du degré p — 1 (n° 3)

v g i T2 et 1 e
dont les ' racines sont (n° 5)

3 : =

ry 2% sl 1%, eter i@ y

7 &tant.=— 1, en verta de I’équation L1 =0 s on emploie
la méthode de la Note précédente, et qu’en prenant ces racines
pour x, &', x", etc. on fasse (n° 14, Note précéd. ),

2 =7 ar® o a%r% - ‘*-37'“3‘.',' ete. “#‘-27"&#-23

" . . ®"=—1
ou o est une des racines de I’équation 4 — 1 ==0; qu'en-
suite on développe la puissance x — 1™ de ¢, en faisant attention

. . . -]
de rabaisser les puissances de « et de r au-dessous de o et

e — ] .
de 7, par les conditions K =1 et ‘= 1, de maniére qu’on
ait cette fonction ordonnée suivant les puissances de « ,

0= 7" =5 o o A g ete. o T,

les quantités £°, &', £, etc. seront des fonctions rationnelles et
entiéres de r, telles qu’elles ne changeront pas par la substitution
3 -

de 7, %, 1% ete. & la place de r, puisque nous avons vu
(n°. 16, Note préc. ) que ces quantités regardées comme des fonc-
tions de 2', 2%, 2", etc. sont invariables par les permutations si-
multanées de' 2’ en' ", 2" en 2", ‘etc. ainsi que par les permu-
tationssimultanées de «' en 2", ' en @], etc. auxquelles répondent
les changemens de 7 en 7%, en 1%, ete. (n° 5).
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7- Maintenant il est clair que toute fonction rationnelle et

entitre de r, dans laquelle r* =1, peut toujours se réduire 4 la
forme

A + Br 4~ Cr* 4 D o ete. = N7,

les coefficiens A, B, C, etc. étant des quantités données, indé-
pendantes de r. On peut méme prouver que toute fonction ration-
nelle de r est réductible & cette forme ; car si elle a un dénomi-
nateur, on pourra toujours le faire disparaitre, en multipliant le
haut et le bas de la fraction par un polynome convenable en 7,
comme nous I’avons vu dans la Note IV (n° R

. . s |
Or puisque dans notre cas les puissances r, r*, 73, ete. ¥
peuvent étre représentées, quoique dans un autre ordre, par les

- 2 3 4 — 2
puissances r, 7%, %, 14, etc. 7¢ > on pourra également ré-
duire toute fonction rationnelle de 7 & la forme

2

A + Br 4 Cr® 4 Dr® 4 Er® 4 ete. 4 Nro“ 77,

en prenant pour A, B, C, etc. des coefficiens quelconques indé-
pendans de r.

Donc si cette fonction est telle qu’elle doive demeunrer la méme
en y mettant 7 & la place de r, il faudra que la nouvelle forme

A 4 Br? o~ Cr® o+ Dr® - etc. - Nr

. Jh — ¢ —1I .
(la puissance 7“ devenant 7 se change en r, pnisque

7 =1 et @" 7 divisé par w donne le reste 1) coincide avec

la précédente ; ce qui donne ces conditions
B=20C, C=D; D=E, elc; N = B3
at réduit la forme de la fonction & celle-ci

A B (7474 % 7 ete, 4 9T,

8. Donc si on dénote par s la somme des macines r, 7, 7%, etc.
36

SCD Lyon 1
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—
7%, on aura également

2

2 3 i g a -
s=r 747" 4+ r* fete. =% ,

et les quantités £°, £, £, etc. de la fonction 8, seront toutes de
la forme A - Bs.

Les coefliciens A et B se détermineront par le développement

actuel de la fonction 8 = """, et la quantité s est connue par
la nature de I’équation a résoudre

T a7 et -1 = 0 (n° 6),

laquelle donne sur-le-champ s = — 1. Ainsi on a le cas ol les

valeurs des quantités £°, £, £, etc. sont connues immédiatement,
sans dépendre d’aucune équation; de sorte qu’en désignant par

1, %, (3,9, etc. les p — 1 racines de I'équation y"‘"l —1=o0,
et par 6, &, 8", 67, etc. les valeurs de 8 qui répondent aux sub-
stitutions de ces racines & la place de «, on aura sur-le-champ
par les formules de la Note précédente (n° 16), en substituant
r pour x et =~ 1 pour m,

p—T g1 m—

= o & s Vet
“Ehih Ve VE 4 i dete. o /le—1)
A =1

(]

Telle est I’expression d’une des racines de 'équation 2* — 1 =o;

- —_—y
on aura toutes les autres par les pulssances r*, r*, etc. " 3
mais on peut aussi les avoir directement par les mémes formules,

2
en prenant 7¢ pour ", ¢ pour a”, etc.

On avra de cette maniere

ot =t p—
RS VE 4 a2 b 4 472 /7 4 ete.
[J-'—-.l
el p—t p—t
7 Va3 VT g3 /5 et
[-'-—.l

ete.
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9. On pourra aussi, si 'on veut, se dispenser de calculer ces
vantités £° et 6°; car, par ce que nous avons dans Particle 1
3 s P q 7

p—1_

de la Note précédente, le terme \/8° (en faisantici m=p — 1)
est fonjours égal 4 la somme des racines que nous dénotons en
général par s, et I’expression de O peut se mettre sous la forme

l=s""" G+ (a=—1)E 4 (2*—1) & 4 (a®— 1) E" -} etc.
qui ne renferme pas £°; et il n’y a plus qu’a substituer «, 3,
¥, etc. au lieu de a, pour avoir les valeurs de #, 6", 67, etc.

De cette maniére, la résolution de I'dquation = —1 =0,

ne dépendra que de la résolution de I'équation y“ 7' —1 =0,
dont 1, a, 3, 3, etc. sont les racines. Or celle-ci est d’un degré
moindre que la proposée ; mais de plus, comme p — 1 est néces-
sairement un nombre composé , on aura les racines ., 3, 3, etc.
par celles d’antant d’équations y¥ — 1 =0 qu’il y aura de fac-
teurs premiers « dans le nombre #—1, comme on I’a vu dans la
Note précédente (n° 12).

10. Soit, par exemple , I’équation &°® — 1 = o0 dont on demande
les racines. Cette équation étant résoluble par les méthodes connues,
on pourra comparer cette solution avec celle qui 1ésu1te de la
méthode précédente.

En Otant par la division la racine 1, on a I'équation du qua-
trieme degré

2 e 2 A 2 @ 1 =0,
dont les racines seront r, r*, r*, 7%

Puisqu’on a ici u=25, on trouve par la table donnée ci-dessus
(n° 4) que la plus petite racine primitive est 2 ; de sorte qu’on
a a=2, et que les racines dont il s’agit, peuvent etme représentées

par les pmssances r, 2, ¥ r2 , lesquelles se rabaissent, 4 cause
de *=1, & celles-cir, r*, r4, 7, en prenant au lieu de I’exposant
2% = 8, le reste de la division par 5.

On fera donc

= 7 - art == a*rt o= a’r?,
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en prenant pour & une racine de 1'équation y# — 1 =o , de ma-
niére que l’on ait at= 1.

Maintenant pour tronver la fonction §, il n’y a qu’a élever
la quatriéme puissance le polyndme 7, et le développer suivant
les puissances de «, en rabaissant celles-ci au-dessous de a4, et celles
de r au-dessous de 7°, par les conditions af=1 et r*=1. On
trouve par un calenl qui n’a aucune difficulté ,

9.= E*" + mgf + ULEE’ + a'ggﬂ,

olt les quantités £°, £, etc. ont les valeurs suivantes, dans les-
quelles je mets s pour la somme des racines r, r*, r, 75

= 12 ~ 155, & 16 + 128

g 24 - 108, E" = 16s.

Ainsi, comme § = - 1 par la nature de 1’¢ uation en x on
2 P 2
aura

= — 1, WP T £" = — 16,
et la fonction 0 deviendra
= — 1+ 4a 4 14a* — 164

Or Péquation p% — 1 =0 se décomposant en ces deux-ci
¥y*—1=0 et »* 4 1 = o, donne tout de suite les quatre ra-
cifes ™1, — 1, VEoX, maN—iT, qu’il faudra sabstituer succes-
sivement pour @, pour avoir les valeurs de 6°, §, §", 6%,

On aura ainsi
0=025,0=—15420 \/—1, 0"=—15—20 \V/—1.
Donc substitnant ces valeurs dans Pexpression de 7 du n° 8, et

o
mettant s =-— 1 au lieu de V#° (n°g), on aura sur-le-champ]

re=g (=1 V54— 1530 y/— 1) /(= 15— 20 i/ —1)).
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11. Mais on peut avoir une expression plus simple de la méme
racine r, en faisant usage de la méthode du n° 25 de la Note
précédente , laquelle est toujours applicable aux équations du genre
que nous traitons, parce que l’exposant #— 1 est nécessairement
un nombre composé, :

Supposant donc en général g — 1 =y » et prenant pour « une
racine de I’équation " — & = o, la fonction z du n° 6 , deviendra
de la forme

2 =X + aX' o X" - etc. - & XO 3
dans laquelle

o 3 S
X' =7 A 1 e 5 B ety e 2T
+1 TS 3y (
X =t T A e L eter
2 2 v
X* o= 1% o 2 A * 4= ete, - 7%

etc.

1) y=f=k
F—1 )1+

I I

- o= - etc. 4= 79",
On formera ensuite la fonction 6 = t’, laquelle A cause de o/ = 1;
sera de Ja forme

&+ af + @’ 4 F" Fete. - 2’ T

et aura la propriété que les quantités £°, &, £’, etc. seront des
fonctions de X/, X", X”, etc. telles qu’elles demeureront inva-
riables, en échangeant 4-la-fois X’ en X', X" en X", X" en X", etec.
X en X

Or on voit par les expressions précédentes de X/, X", efc. qu’en
y substitnant 7 & la place de r, X’ devient X*, X’ devient X7, €tcy

et X devient X', car X&) se change en

() y—1 2y—1 Jy—
X = ¢ o

¥ 2y 3y Y
7% 1% o 7% e ete, - 1Y

‘ Lttt § ; .
mais Wy =p—1, et 7% —=r, comme on Pa vu ci-dessus

(n* 5):
Donc les quantités £°, £, £, etc, devront étre des fonctions de ¥

SCD Lyon 1
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telles qu’elles demeurent invariables par le changement de r en 7%
par conséquent , par le n° 7, elles ne pourront &tre que la forme
A+ Bs, A, B étant des coefliciens qui seront donnés par la
formation de ces mémes quantités, et s dénotant la somme des

racines 7 = 1% 4 1% 7% -} etc. 4 r“'u“z, laguelle est = — 1
par I'équation proposée ; de sorte que les quantités £°, &', &', etc.
seront toutes données, comme dans le cas précédent (n° 10), et
Von aura sur-le-champ par les formules du n° 25 de la Note pré-
cédente, en y mettant » 4 la place de 7z, et s somme des racines

a la place du terme \/&°,

et s+ VI + VI + etc.

v

NF s a2 ! ‘/§?+ g5 V’F"‘Efc-

v

v ?
s AT L@ T fete.
v

ete,

Dans ces expressions &, 2, 7, etc. sont, avec l'unité, les racines

de ’équation ' — 1 =o, et ¢/, &', 8", etc. sont les valeurs de §
qui répondent a la substitution de «, B, 3, etc. au lieu de «.

On n’aura pas besoin de calculer la valeur de Z°, en employant
I'expression de 6 du n° g9, laquelle devient ici

B & (2 — 1) & + (@ — 1) & o+ (& — 1) £" + efe.

— - . - .
12, Le cas de v ::’-‘—5— mérite une attention particulicre ,

parce qu’il donne la division de la circonférence en y parties.

. i | r
Soit donc v = “=—, et par comséquent = = 2, on aura

p—1
X' =r-r® " . Or puisque o~ " — 1 est divisible par p, et

=T

que a est supposé une racine primitive, @ * — 1 ne sera pas
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s o o
divisible par #; mais 6“7 '—1=(¢ * —1) (2 * 4 1). Donc
e |
p étant un nombre premier, @ 2 -1 sera divisible par & ; par
o1
conséquent — 1 sera le reste de la divisiondea 2 par g3 done
p—1

a 2

1
r

sera égale égale A

Ainsi on aura
X’=r+%, X”:r“-{-#, X':rai-i-%, ete.
Or on a par les formules connues du théortme de Cotes,

7 == ¢ob §%°—°- ~- sin 5:?0 V—1 (n°1),

et , en général .

g -::l 360° = sin ;L"i 360 N/— 1.

Donec

7 SGOO a a*
5, S 2c08 ——, X? = acos = 360°, X" = aco0s Fy 360°, etc.

Ainsi les valeurs de X/, X", X", etc. sont toutes réelles dans
ce cas, et donnent immédiatement les cosinus des divisions de la
en pm parties.

13. Ayant trouvé par les formules générales du n® 11, les ra-
cines X', X", X”, etc. il faudra poursuivre le calcul de la méme
maniere pour arriver a la racine r. On regardera donc les o racines
qui composent la fonction X', comme les racines d’une équation

. a
du degré =, et on les substituera pour 2/, 2, a”, etc. 2™ dans
Pexpression générale de la fonction #; on aura ainsi

v 2y 3y o (w—1)y
1= 7 4 ar® 4 2% = Or% e etes e aTLATT

ou il faudra prendre pour a une racine de ’équation 37 — 1 = o.
P P q iy

1 L7 o
De 13 on aura, & cause de 2" '=—=1,

b =T =& + af 4 @ ete. 4 o7 ETTY,

SCD Lyon 1
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(Jéeris ici ¢, , B, , £, pour distinguer ces quantités de celles que
nous avons désignées plus haut par 7, 8, £ ). Comme les quantités
£, & ,&, etc. sont en général des fonctions de 2, 2", 2”, etc.

qui ne varient pas par les permutations de 2’ en 2", 2" en 2", etc.

2™ en o (n° 16, Note précéd. ), elles seront ici des fonctions

- - ¥ -
de 7 qui ne varieront pas, en y changeant r en 7%, puisque par
" v ar (m—1)y 3
ce changement, les racines r, %, % , etc. ® deviennent res-
. o' a2 a3v
pectivement 7, ¢ , 7%, ete. r.

Or il n’est pas difficile de prouver par-un procédé semblable
a celui du n° 8, que toute fonction rationnelle de 7, qui aura la

v
proprié¢té d’étre invariable par le changement de r en , sera
nécessairement de la forme

A BX o OX° DX o eler o EKD,

en conservant Jes expressions de X/, X', X”, etc. du'n® 11.

Car d’abord toute fonction rationnelle de r peut se réduire i
la forme (n°7),

A o+ Br 4 Cr% 4~ Dr% - Er” - ete. -t Nr”’F_I;

et pour que cette fonction demeure la méme, en y changeant 7

¥ - - -
en 7%, il faut que les coefficiens des termes qui renferment
¥ av 3y 3 -
, ", %, ete. soient les mémes que celui de 7; que les coef-

g2+ V1
. 2

g i : v+ .
ficiens des termes qui renferment %, » etc. soient

v
ra

. v42
les mémes que celui de 7*; que ceux des termes r% v

Jr-+2 5 . 2 7 ey £
%77, ete, soient les mémes que celui de 7%, et ainsi de suite;

ce qui réduit la fonction 4 la forme que nous venons de lui assigner.
fin effet, on voit que chacune des quantités X’, X", X”, etc. x®

- ¥y
demeure la méme, en y substituant 1* & la place de r; car le

d ier ter aF—1r ’ . ™ a2 .
ernier terme 7 de X’ devient 7% — » = r, le dernier

T==1)v=}-1
=1

- A1 Loitir
de X" devient 7 =% et ainsi des anfres,
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14. Donc chacune des quantités £°, £, £°, etc. deviendra aprés
le développement, de la forme

A 4'BX . 'CX* + DX" - éte,

et aura par conséquent une valeur connue. Ainsi la fonction 8
sera connue, et I'on aura les valeurs de §, &, §”, etc. en y sub-
stituant au lieu de «, les # — 1 racines «, 8 ‘3, etc. qui avec
'unité, résolvent I’équation ™ — 1 = 0. On aura ensuite pour r
une formule semblable A celle du n® 8, en y mettant # & la place

=
de p — 1, et X’, somme des racines, au lieu duterme \/6°. On
aura ainsi

k3 n ka
X+ VA Vo 4+ V5 + etc.

T

T

15, On aurait aussi, si on le desirait, les expressions des autres

3v % 4
4", etc. qui composent la fonction X’ (n° 11),

i ¥ 2y
racines %, ¢ , r
S

k3
en multipliant dans I'expression de r les radicaux V8, ', etc.

T2 T=—0,
> B

— ] =
d’abord par «” ', 87 ', etc. ensuite par « s €tc. par

7—3 7—3
a & o Lt
On pourrait méme, sans faire un nouveaun calcul , avoir éga-

: - . : : :
lement les racines 7%, 7%, etc. qui composent la fonction X,
par la seule considération que X' devient X", X" devient X", etc.
en y changeant r en 7; de sorte qu’il suffira de changer dans
r ’ 14 r
P’expression générale de §, X' en X', X" en X", ete. XD en %
Par la méme raison, comme X' devient X”, X" devient X", etc.
par la substitution de r* i la place de r, on pourra déduire des
expressions des racines qui composent la fonction X, celles des
racines qui composent la fonctien X", en changeant simplement
dans Dexpression générale de 6, X' en X", X' en X', ete.
X¢ en X, X en X", et ainsi de suite.

16, Si le pombre =« n’est pas premier, on pourra 2 en le dé-
7
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composant en ses facteurs, décomposer encore l'opération précé-
dente en d’autres plus simples.

Ainsi si # = v'a’, on pourra ne prendre pour & qu'une racine

de lequanon_y —1=0, ensorte que 2’ = 1, et la fonction 7,
(w® 11) deviendra

=X + aX' 4 a’X! - etc. ot.v—'lXE” ),
en supposant '

(m—)y

2 /i 3!
X = 7'-'{— o'l 32 oLl 0 Dete, -+ r¢
Xu ?"a + (v 1)y + ra(:ay'_'_l}u + . + ra(”—""“»"

1
(av'+a)y (7r—y'~2)y

" (v +2)y \
X 1‘“+“ i -+ ete, 4 r° s

1

ete.
X,\'vf) a(v’—l)v + af‘lv’-—l)!

=P r — A ~- etc. == a7

On fera ensuite §, = t, » et D'expression de 6, étant développée
sous la forme

b= £+ o+ ) oo + 2",

a cause de 2’ = 1, les quantités £,&,¢&, etc. seront des fonc-
tions de X,, X’: - K’f, etc. qui ne changeront pas par le changement
simultané de X' en X', de X' en X", X’ en X, etc, > A0
en X (Note prée. 25). Or on vmt par les expressions précédentes
de XI » X, etc. que ces changemens ont lieu en changeant sim-
v 4 ., ¥
plement 7 én r*. Done les quantités £,8& 5, ete. regardées
comme des fonctionsde r, devront étre invariables par le chan-

¥ r .
gement de 7 en ¢ ; par conséquent elles seront nécessairement
de la: forme ‘ iog1

A 4L BX" 4 €X"'- DX" - etc,
par ce qu'on a démontré ci-dessus (n* 13),

Donc pnisque les valeurs de X', X7, X*, etc. sont déja connues par
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Popération précédente , celles de £°, &, £", ete. seront condues
aussi. Ainsila fonction 6, sera connue aussij et de 14 on aura
les' valeurs des » racines X', X, X", etc. par des formules sem-

blables & celles du n° 11, en y changeant » en »', X en X,,
Oen 6., et prenant pour @, B, 3, etc. les racines de Péquation

¥ —1=o0, excepté 'unité.

On remarquera aussi que s étant la somme des racines
X 4 X'+ X" - etc. sera ici égale & X',

17, La valeur connue de X' ne donne que la somme des #*
7 2 q

a’ 2vy (m'—1)'y

ragines r, 7 ; r* ., ofe, ¥ ; il faudra, pour avoir la va-
leur de 7, regarder encore ces @’ racines comme données' par une
équation du degré @', et faire de nouveau

(7:- --l),v ¥

g ] 21y —
t,=r-Far® - ar* < etc. Q"1 F
r
. . w
en prenant pour o -une racine de ‘l’équatmn ¥ —1=10; on
fera ensuite ;
7 — 1)

9,=t:”=§:+§;+ 2’z -+ ete, 4~ E(

et on ‘suivra le méme procédé que nous avons expo3é dans' 1é
n° 13 et suiv. Que si le nombre #” est composé de maniere que
Pon'ait'#’ = »"z" , on pourra , pour éviter le développement
d'une puissance trop haute, prendre pour « une racine de Péqua-

ff

tion ¥ — 1 =o0, ce qui donnera a 7, la forme

fo= X ot X o @ X] oete. o THXCD,

et on poursuivra le calcul comme ci-dessus, et ainsi de suite,
jusqu’a ce qu'on arrive & un dernier facteur indécomposable.

L’avantage de ces décompositions consiste dans Pabaissement
des puissanees auxquelles-il faut élever les polynémiess’ pour avoir
les fonctions 8, ce qui diminue la longueur du calcul ; et en-
suite dans "abaissement des radicaux qui entrent dans}’exmessxon
de la racine r, ce qui simplifie cette expressions

SCD Lyon 1
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Telle est 1a, marche générale et uniforme du calcul; nous allons
Tappliquer 4 quelques exemples pour la faire mieux concevoir,
et nous reprendrons d’abord celui de I'équation «* — 1 =0, que
nous avons résolue ci-dessus (n° 10).

18:On a icimw =='1 =4 ==2.2; ainsi on fera v=12, =2,
(n° 11). L’on prendra pour a« une des racines de 1’équation
y*—1=0; de sorte qu'a cause de a* =1, l'expression de la
fonction z du n° 10, devient

tam K odX ot Xi=wulopt, X' =7p" 175,

De 12, on trouve en faisant le carré de £, 4 cause de 2* =1}

V=il o £k a5 Boim X0 e X, £l tmia X'XC,

Substituant les valeurs de X', X’ en r, et développant les carrés
et les produits , en rabaissant les puissances de r au-dessous de 7°,
4 cause de 7= 1, on trouve

B =4 By
g = a(r - rt 1 4 ),

Done comme 7 - 7* - 7° = 7% .somme des racines est — — s
par I'équation, on a £°=3 et £ = — 2, Ainsi I’expression gé-
nérale de § deviendra § =3 — 24.

De 1, & cause que les valeurs de « sont 1 et — 1, en faisant

o=+~ 1, on aura  =5; et comme

s=x a2+ =—-—1 S
les formules du n° 11 ci-dessus donneront

.r_____'—l"l"vs p o == 1=15
Tt A P

J

On .aura;ainsi par la valeur de X' celle de r - 7% somme de
deux. des quatre racines de la proposée.. Pour avoir la racine
en particu({ier, on fera de nouveaun un calcul semblable, en con-
sidérant les deux racines r et 74 comme. racines d’une equatmn
du second degré,
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On fera donc #,=r-4-ar¢, « étant, comme: ci-dessus, racine
de y* — 1 =o0; et de 12, on aura

9,=tj=§°l+a§: , ol f‘l‘:r’-{-r','et £ =='ars,

Ici, on voit tout de suite que les valeurs de £° et £ sont données
au moyen des valeurs déja connues de X’ et X’. En effet, & cause
de 7* =1 et par conséquent 7* =173, on a Er=r+4-r=X" et
£, =2. Donc on aura 8, = X"+ 2a; de 13, en faisant a =—=1,
on aura §, =X"—2, et la formule du n® 14 donnera, = étant=2,

— X’—!— ‘/(Xﬂ'_g).
2

Enfin substitnant ici les valeurs X’ et X' trouvées ci-dessus, on

aura g
< 1B (ioma}/B)

r — 3 H

et par les remarques du n°15, on aura aussi

i

= X_’—"V(X_”—-—i)-
—_— _'_———2 3

et changeant X' en X, X’ en X/,

i X.”""" ‘/(X.’—Q-)_.
m— —"-—‘2—'— F]

Fas

- e X7 V( X’-——D.) :
Y _———

2

d’ot1 ’on aura, par les substitutions des valeurs de X’ et X’,

_ —14+V5—/(—10—2(/5)

il
4

S -—1—\/§+\/(—1o+21/__5_)
o 4

__=1—V5—1 (—1042 \/5_)'
Y 4

73

Comme 5 est un nombre premier, ces valeurs de », »%, %, r#
seront les quatre racines qui, avec l'unité, résolvent I'équation

af~—=1==0(n°3)
a7 ¥

SCD Lyon 1




294 : NOTE XIV.

“19. Les expressions de ces racines coincident avec celles qu'on
trouve en résolvant I’équation z®— 1 =o0 par les méthodes con-
nues. Car on a d’abord, en divisant par 2—1, zf~+-2’+4-2°~+-z-+ 1=o0,

équation qui, étant mise sous la forme .1:’+—I—xa+a:—[—i+1 G0y

devient z*~-u—1==o0 par la substitution de z -+ %:u On a

ainsi I’équation a*— zu -+ 1=0, laquelle donge

IR T4 el 2
Ve

A A
2

ensuite 1’équation en z donne z= ; de sorte qu’en sub-

stituant cette valeur, on a

—1 =%+ /B (— 10 aVF)
4 ’

r=

ol les signes supérieurs et inférieurs de V/5 doivent se répondre,
mais sont indépendans de ceux de I'autre radical ; de sorte qu’ona
les quatre racines pat Pambiguité des signes:des deux radicaux.

20. Passons & ’équation 2’ —1 =0, laquelle étant dégagée de
la racine 1, devient

X8 S = 2 - 2 A @t = - 1 =0y

dont les raeines seront r, 7% 7%, r, 7% 7°

La plus petite racine primitive pour le nombre 7 est 3, d’a-
pres la table du’ n* 4; ainsi on aura la - progression 3°, 3", 37,
33, 34, 55, savoir, 1, 3, 9, 27, 81, 243, dont les termes, étant
divisés par 7, donneront les restes 1, 3, 2, 6, 4, 5, qu'on pren-
dra pour exposans de r. On aura ainsi, pour les racines de 1’é-
quation proposée , les termes r, 73, r*, 7%, %, r°, qu'on prendra
pour &, z', x", etc.

21. Nous remarquerons ici que pour avoir les esposans de r
qui doivent former toutes les racines, il n’est pas nécessaire d’é-
Jever la racine primitive aux puissances successives, et de diviser
ensuite ices puissances par le nombre premier -auquel la racine pri-
witive se rapporte: il suffi¢ de multiplier chaque reste par la ra-
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cine primitive, et de ne retenir que le reste de la division par le
nombre premier donné. Ainsi en commencant par 1, on a, dans
le cas présent, les deux premiers termes 1, 3 ; multipliant 3 par
Ja racine primitive 3, et divisant par 7, on a le reste 2 troisitme
terme; 2 multiplié par 3 donne 6 quatriéme terme ; 6 multiplié
par 3et divisé par 7 donne 4; enfin 4 multiplié par 5 et divisé
par 7 donne 5. Si on voulait continuer en multipliant 5 par 3 et
divisant par 7, on retrouverait 'unité et successivement les autres
termes déja trouvés.

22, Maintenant on fera

L= ar® J=atrt o @S adrt - 055,

en prenant pour « ume racine de l'équation 3 —1=o0; ensuite
on formera la fonction f=¢°; mais comme Pexposant 6=12.3,
on pourra simplifier le caleul et les résultats par la méthode da
n® 11, en ne prenant d’abord pour « qu’une racine de I'équation
Y*—1=o0;ce qui, a cause de @’ = 1, réduira I'expression de z
a celle-ci: t=X'+4 aX", dans laquelle

, X==r-e=ridsrt, X'=r® 47 =15

on aura ensuife
= 1> — Eo_'_ azl, 01'1 ér) — ng. + Xﬂn, EIZ 2x1x1;,
et on trouvera aprés le développement, & cause de "= 1 .

B =B (r S e P £ e )
E=20B4r e e A rt=rY),

Or 77’ 4-7r* 4-7°~- r*-}-7°, somme des racines, est —— 1 ; done
go==—3,f =4, et la valeur de 8, se réduira 0 =—5 + 4.
De la, en faisant a =—1, on aura §= — 75 et 'on trouvera
sur-le=champ les deuix racines

X — = +‘/"""7

T 7

2

5 S SLvab e
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23. Considérons maintenant les trois termes de I’expression de X’
comme les racines d'une équation du troisitme degré : prenant «
pour racine de I'équation y° —1=0, on fera

t, = r-ar® -a’rt;

ensuite , en faisant

0. =1 =& ot ',

on trouvera, a cause de a’=1 et =1,

ge 6 o= 78 =4 r° 4 7%
g =5 (r4 1 1),
' = 3 (1S 1°),

£=64X,  £=3X, & =3X"

8aAVOir 5

de sorte qu'on aura
0, =6 - X" =}~ 32X’ =}~ 32 X" ;

donc en nommant « et 3 les deux racines imaginaires de y*=1=0,
savoir , de y* ~y -1 =0, lesquelles sont
ey I —_1—/—3
a:———-——lt‘/ 5 8 o ‘1 2‘/—,
et faisant
s e XA = BaX o 30X
g 6 4+ X" - 38X - 35°X’,
on aura (n°14), en faisant 7=3,

3 3

X'+ vV 4+ VE

r —

24. Venons 4 I'équation x** — 1 =0, laquelle étant divisée par
x—1, s'abaisse au dixi¢éme degré et devient

@0 DI B - 27 - 2 o 2 2h 2P 2 1= 0.

On voit par la table du n° 4, que la plus petite racine primi-
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tive pour le nombre 11 est 2 ; ainsi la suite des restes qu'on
trouvera - facilement par le procédé du n° 21, sera ici 1, 2, 4,
8, 5, 10, 9, 7, 3, 63 de sorte que la série des racines sera

TPy PRSP rh, POy o, iriy T,

dont la somme sera par conséquent =— 1, et l'on aura pour ¢
cette expression générale :

1 o= 7 art == 22 rt o a3r® e adrS e 57 o 4
- a’r7 == afr® - adrt,
laquelle, en prenant peur « une racine de ’équation y'’=—=1=o0,
donnera, a cause de a™ =1,

b=t =§° - af - a't’ 4 23" 4-ete. - a’f™,
d’oit l'on tirera la valeur de » par la formule générale du n* 8,
en y faisant p=r11.
Mais pour se dispenser d’élever le polynome # i la dixitme
puissance , on pourra décomposer 'opération en deux autres cor-

respondantes aux deux facteurs 2 et 5 du nombre 11—1=10,
par la méthode du n° 171.

Prenons d’abord pour « une racine de I’équation y*—1=0;
de sorte que Pon ait a*= 1. Par 13 Vexpression de 7 se réduira
a cette forme plus simple,

. A= X.’ + d’X.;
en faisant pour abréger,
X =r—r-fr47r-4r
er:r;_[_rs_i__rto_l_rv'_l_rsq'
Tt la valeur de b sera :
b= =X"4X" 4= 22X'X".

En développant les carrés des fopctions X' et X', et rabaissant
‘toutes les punissances de rau-dessous de r*, & cause de r'=i, on
trouve

X’» =X’ 4-5X", XM= oX" 4 3X/,
8
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et par conséquent X2 —-X"=5 (X'« X")=+=5, & cause que
X' 4=X" est la somme de toutes les racines.

On trouve de méme, par la: multiplication), .

XX =25 o F(X A X! ) = §ame3,

On aura ainsi ' ==—5--6a; et faisant a==—1, on aura
G’=—-‘Ilu .

Donc,* on ‘aura par les formules du n° 11, en y faisant
i . B . :
X" — —1—{/—11

2

ol e s A
25. Ayant ainsi les valeurs de X' et X", pour avoir celle de 7,
il faudra considérer les cing 'termes qui composent la quantité X’
comme les racines d’une équation du cinquitme degré, et puis-

que 5 est un nombre premier , on ne pourra employer que l'ex
pression générale de ¢, ;

Le=r—art 4= a*r® o= a’rt -} aér®,

en prenant pour ¢ une racine de l'équation y°*—i1=o. Ensuite
il faudra faire

A

et il ne s’agira que de trouver les valeurs en r des coefficiens
£, &, etc., par Dlélévation de Pexpression de ¢ i la cinquitme
puissance , en ayant soin de rabaisser les puissances de: @ au-
dessous de a°, et celle de r au-dessous de r'', & cause de a5 =1
et 7'=1. Par un calcul qui n'a de difficulté qu’un peu de
longueur, et sur I'exactitude duquel on peut compter, jai trouvé,
en retenant les expressions de X' et X' en r du n° précédent,

£ = 120 4~ 51X’ 4 noX"
g 100 + 60X’ = 45X’
g 50 + 85X" -~ 30X’
e 60X’ -+ 65X"
EVe==56X" - 75X,
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Comme les valeurs de X/, X" sont déja connues par I'opération
précédente, I’expression de la fonction de § ne présente plus rien
d’indéterminé, et elle donnera sur-le-champ la: valeur de la pre-
miére racine r, par la formule générale du n° 14, en y faisant
7 =15, et prenant pour «, B, 3, d' les quatre racines qui, avec
lunlre, résolvent Véquation y°—1=o0, et pour §, &, 4”; 6 les
valeurs de 0 qui répondent aux substitutions de «, @8, v, d ala
place de a dans I’expression trouvée pour 6.

26. Si dans les valeurs de £°, £, etc., on substitue celles de
X’ et X", données dans le . n°® 24, on a

ED e 139—39 )/ —11 g g — 95415/ =11
2 - 5
Z” gio '—15+55‘/—]l Ew bal ——Tg5—5‘/_“
o g W T A

E”._ o 125425/ —11 -

2

Si ensuite au lieu des racines 8, y, d', on substitue les puis-
sances &, o’, af de la racine «, qui les représentent, a cause que
5 est un nombre premier, et qu'on rabaisse les puissances de a
au-dessous de «°, on aura

Qr — éa + d’ér, + a;zn + ugém' -l-—-'df[_%".,
9" Ea + d_:gf_l_ aL“E" + aj:"’ + GLSEH
g"’ — Eo __]__ asz'_‘_ OLW’ + m#z"” + 5{_5"“’
s giap ol M AR wE N 2y

et ]’ exprcssmn de la racine »'sera

g(~—1+‘/—11)+\/6’+\/8“+l/9 +V sl

£5 ’A

o —

ou il ny aura plus qu’a.mettre pour 2;, &*, 2% at les; valeurs de
2 1y S que nous avons donnees plus haut (n° 18).

n‘.

274, On trouverait _par, les mémes. prmc:pes les, valeurs des puis-
_sanges de .7 qui forment les autres racines de I'équation x''—1==o0,
exeepte I'unite. . % 4

‘it d’abord: ‘on - aura les valeurs des racines: 1%,:7%, rf #*1qui
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entrent dans la fonction X’, en multipliant dans ’expression de r,

4 5 5 5

les radicaux V¥, Vo, VT, v, respectivement par a4, 34, 34,
c’\"‘, pour la racine r#, par 2%, ﬁ3, y i d' S APOUE 70 par. a®, £,
»*, d*, pour 7%, et par &, 3, 3 , d pour r°, c’est-d-dire par
g, a’ , 2t Sia )y par. @y, a 5, @t , @y, par; dt 5 et o et et par
aly 8ty o, ah

Ensuite, pour avoir les valeurs des autres racines »*, r®, r',
77, r% qui entrent dans la fonction X', il n’y aura qu’a changer
dans cellesde 7, r4, 5, 7%, r, X' en X', et X" en X'; ce qui
ne demande que de changer le signe du radical y/—11 dans les
expressions de £°, &, etc.

28. Je donne ici d’autant plus volontiers ces expressions des ra-
cines del’équation &' — 1 =0, qu’elles r’ont jamais été données,
et qu’elles n’auraient pas méme pu I'étre par les méthodes con-
nues qui demandent la résolution d’une équation du cinquie¢me

degré.

Il y a cependant une exception & faire 4 ce que nous venons
de dire; car on trouve a la fin du Mémoire de P andermonde,
sur la Résolution des équations, dont nous avons parlé dans la
Note précédente, I'expression de la racine d’une équation du cin-
quieme degré, d’oi dépend la résolution de I’équation &''——1=0.
Car cette équation étant divisée par x—1, devient

x"° ~4 2 + x* + etec. -+ 1 = o0,
laquelle étant du genre des réciproques, pent s’abaiseer au cin-
q 8 q
quiéme degré, par la substitution de a:-}-i—_—-u, et 'on obtient

par les formules de la Note X (n° 14) cette équation en z,
W ut— 4 — Jur 4 Bu 41 = e.

En prenant z négativement, ce qui change les signes de tous
les termes pairs, on a 1’équation résolue par P andermonde. Cet
auteur ne donne Pexpression dont il s’agit , que comme un résul-
tat de sa méthode générale, sans indiquer en détail les opérations

_ par lesquelles il y est parvenu, et personne, aprés lui , ne s'est
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occupé , que je sache, a vérifier ce résultat qui parait méme é&tre
resté ignoré,

29. La valeur que nous venons de trouver pour la racine r de
I'équation x" —1=o0, pourrait servir a cette vérification; mais
on peut parvenir directement a un résultat comparable a celui
de Zandermonde, en prenant pour «, dans l’expression géné-
rale de ¢z du n° 24, une racine de 1’équation y®—1=o0, aunlien
de I'équation y* — 1==0 que nous avons employée, ce qui est

permis, puisque 2 et 5 étant les facteurs de 10, on peut partir
de 'un ou de l'autre a volonté

30. Faisant donc a’==1, l'expression générale de # (n° 24)
deviendra

t =X - aX' 4 X" + X" 4 afX",

dans laquelle

Ximmoprt, Xiz=e 425, X =r4r,
Xn= 7.2__!_ 7.3’ Xr o I‘5 + rs,

et 1'on regardera maintenant les quantités X', X', etc., comme
les racines d’une équation du cinquitme degré; c’est le cas que
nous avons considéré en général dans le n° 12.

On fera donc

b= =¢ 4 of + ' + oL + £

et on cherchera les valeurs de Z°, £’, £, etc. en fonction de r;
par le développement de la puissance cinquiéme de 7, en y rd-
baissant continuellement les puissances de « au-dessous de 23, et
celles de 7 an-dessous de 7', a cause de e’=1, et r""=1. Le
calcul n’a d'autre difficulté que la longueur. Voici les résultats
que j'ai trouvés et dont je crois pouvoir répondre.

En faisant pour abréger,

s=r—47r 4+t 4714t 4
R A T s i

{
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1640 =} 1836 s, £ = 1700 - 1830 s,
2050 = 1795 s, £“ = 1800 - 1820 s,
1900 -~ 1810 s.

Or s est la somme des racines qui, par la nature de 1’équation
du dixi¢me degré en x dont le second terme est %, doit étre

égale & —1.

Faisant donc s =—1, on aura

a2 w106, - B == rBon F = abb
= — 20, £7"= go.

‘Ainsi la valeur de 6 sera

) = — 196 — 1302 - 255a* — 202° -4 goat,

En mettant successivement a la place de 2 les quatre racines ,
B, v, d de l'équation a*—1==0, on aura les quantités &, ¢,
6", 6, et si on prend, comme ci-dessus (n° 26), pour ces racines
les puissances «, a*, &% a*, dont les valeurs sont les mémes que
celles de r, 7%, 7%, 1%, du n° 18, on aura, a cause de =1,

& — 196 — 1304 4 2552* — 204 - goat
g — 196 — 130a’- 255a% — 202 - goa®
6" — 196 — 1300’4 2552 — 20af - goa®
G — 196 — 1304t~} 255a° — 20a* - gouo,

et la formule générale du n° 11, donnera tout de suite, en fai-

;sanj: y=—>5 et s=—1,

T - ad He it e
X,_—l+‘/b’+‘/b”+‘/sm+‘/t“
- ——— 5 L

_ : £

Cette quantité X' est =77 =r--_, &cause de 7" =1; c’est
360° L T .

la valeur de 2cos— (n’ 12); c’est aussi celle de la racine # de

I’équation en, z du cinquitme degré (n® 28), puisque 7 est la
racine de l'dquation a''-—r1=—o. Ainsi Pexpression précédente,
prise négativement, doit s"accorder avec celle de Vandermonde.
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31. Pour pouvoir les comparer facilement, nous substituerons
dans les expressions précédentes de &, 4", 6”, 6, les valeurs de

a, «*, a’, a*, qui sont les mémes que eelles de », 7%, 73, r* du
n°® 18.

En faisant pour abréger,

= y(=10—2V5), n=y(—1042V5),

—14VE54m ai = T1=VE
4 4 4
i = g"—l‘l —— -_'-.-_
1 :l:/ 5 e 1+;/5___n_z’

a =
[ 1

et pour s’assurer de la justesse de ces expressions, il n’y a qu’a
faire le carré de — 14 \/5-4m, qui est6—a \/54-m*-2( \/5—1 )m;

or en faisant passer sous le signe radical de 7 le coefficient

V5—1 élevé au quarré, on trovvera (\/5— 1) m=2n; de
sorte qu’en substituant la valeur de m*, on a

(—14+-VE+4m' =4(—1—y5+n)

‘On peut vérifier de méme les antres puissances de a.
Faisant ces substitutions, on trouve

§ = i(— 979 — 275V5 — 220m - 275n)

6 1(— 979 + 275V5 — 275m — 220n)

6 — t(— 979 + 275y B+ 275m 220n1)

§"= 1(— 979 — 275V/5 - 200m — 275n) ,
ot 'on remarquera que les coefficiens 979, 275, 220 sont tous
divisibles par 11 et donnent pour quotiens 8g, 25, 20; de sorte
que les quantités &, 6, 87, 6" peuvent étre exprimées plus sim-
plement ainsi:

§ = L (— 89 — 25\/5 — 20m -+ 25n)
6" 1i(— 8g 4 a5\/5 — 25m — 20n)
0" = L1 (— 89 + 25\/5 4 25m + 20n)

W= Ll (— 89 — 25\/5 -~ 20m — 25n).
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32, Pour rapprocher davantage nos expressions de celles de
Vandermonde , nous emploierons ces transformations:

m=p+4g9, n=p—gq,

en supposant

R T VB S e )

lesquelles se vérifient en faisant les carrés, et en observant que
pg = — Vb, parce que le produit des deux radicaux réels et

positifs V(5 +2v5), V(5—2v5) est \/5; donc
VE=pV—1x q\/::—pq.
Par ces substitutions, les quantités &, ", 6" 6" deviendront
O = 1:(— 89 — 25V5 -} 5p — 45,)
§ = 1:(— 89 4 25V5 — 45p — 5¢)
0" = L (— 89 + 25V + 45p + 59)
8" = 11 (— 89 — 25V5 — 5p 4 459).
53, Pandermonde a donné, dans les Mémoires de I’Académie
des Sciences, de l’année 1771 (p. 416), pour la résolution de

I’équation
2 — at — 4t B2 - Fx —1=0
cette expression de la racine
r=1(14-A" 4+ A" + A"+ A7),
dans laquelle
’ . 1r
A Vi (89 - 25V/5 — 57 - 45p)
5 —
A" = y/E (89 + 25V5 + 5¢ — 45p)
A" Vi (8g = 255 — 5y — 45p)
a9 —
av= y3 (89 — 25V5 + S + 45p),
en conservant les valeurs de p et ¢ supposées ci-dessus.

On voit que les expressions de “A” et A' coincident avec celles

5 A X
de yV—p§" et /=, el que les expressions de A" et 4" ne dif-
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5 5
ferent de celles de \/—¥ et \/—f" que par I'échange des quan~
tités p et ¢ entre elles, ce qui ne tient qu’an signe du radical
2V/5 sous le radical carré. A cette différence prés, qui peut ve-
nir d'une faute d'impression dans le Mémoire de Fandermonde ,
ses résultats s’accordent parfaitement avec les ndtres, puisque la
racine de son équation en x, répond A la racine de notre équa-
tion en z, prise négativement , et que tout radical cinquiéme

i g
V—40 est la méme chose que — /8. On peut donc dire que
Vandermonde est le premier qui ait franchi les limites dans les-

quelles la résolution des équations & deux termes se trouvait res-
5 :
serrée.

34. Pour ne laisser aucun doute sur la correction a faire 4 la
formule de P andermonde, nous allons prouver qu’elle résulte
des principes mémes de sa théorie. En effet, si on désigne , comme
lui, par #, 7', 7", " les quatre racines qui , avec l'unité, ré-
solvent I’équation z® — 1 = o, il est facile de voir par la for-
mule générale de I'article VIII de son Mémoire, que la quan-
tité A ne peut étre que de la forme

V(A + Bt 4 Cr' + Dr” + Erv);

et qu'en prenant cette expression pour I'une des quantités A', A7,
A", A™, les expressions des trois autres doivent résulter de celle-ci
par la substitution de 7, 7%, r* & la place de r; les quantités
A, B, C, D, E étant des fonctions des racines de I’équation a
résoudre , indépendantes des racines 7', 7', 7%, r'".

Or par les relations données dans le méme article entre ces
dernitres racines, on a

v

m i 4
£ y A=,

P e P T i ey
¢ Iv

S = e p [ =R = 1 FREl e =

i v

/

M =1 e = = = = =1

39

.
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Donc les quatre expressions dont il s’agit, deviendront
V(A 4= Br 4 C* 4Dy + Erv)
v (A = Br"+ Cr" 4 D" + Er)
V(A 4= Brrg G 4= D o Er")
&(A -+ B 4+ Cr =+ Drv+4 Er").

35: Dans larticle XXIIT du méme Mémoire, on trouve pour
les racines de I’équation x° — 1==0, ces expressions, dans les-
"quelles j’introduis pour plus de simplicité les mémes lettres p et ¢
employées ci-dessus,

+3 o+ o+
%{—-Iig VEI}QZ}P}-
- -y o+

En prenant la premitre de ces racines pour 7, de sorte que
“Ton ait

=5 (— 1V P9,
il faudra, d’aprés les formules du n°.51, en prenant « pour 7',
et substituant p 4~¢g, p — ¢ pour m, n, supposer
it 2 N5 B ) 5

(
(= I_\/5'_P+‘7):
(— 14+ VB —p-—yg)

"5 "i
l

FSERE SCREE S L)

_Substituant ces valeurs dans les expressions ci-dessus, elles se
changeront en celles-ci

Vi (F + G V5 + Hp + Ky)
Vi(F — G V5 + Kp — Hy)
Vi (F— G V5 — Kp + Hg)
Vi (F 4+ G V5 + Hp — Kyq),
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en faisant pour abréger

P AN g ek vy §
G ol Boste CireiDuakl
He B —C 3% D—FE
Kas BubiQics DiE,

lesquelles doivent coincider avec celles de A’, A", A", AW rap-
portées ci-dessus (n°® 35). Mais on voit au premier coup-d’ceil que
cette coincidence ne peut avoir liea ; a moins qu'en ne change
a-la-fois p en g et g en p dans A’ et A", ou-dans A” et A'", parce
que dans les formules précédentes ; les coefficiens de p et ¢ ne sont
les mémes que dans les deux ot la racine /5 est affectée du méme
signe, au lieu que dans les expressions de A, A", A", A les
quantités p et ¢ ont partout les ‘mémes coefliciens.

36. En faisant ce changement dans A" et A", comme nous 1’avons

indiqué (n° 33) pour accorder les formules.de ¥ andermonde avec
les notres, on pourra supposer

’

= y/2(F + G V5 + Hp + Kg)
L(F 4+ G V5 — Hp — Kq)
(F — G v5 — Kp + Hg)

i
A" = /1 (F — G V5 + Kp — Hyg);

%
%
%

ce qui se vérifiera en faisant
F=11.89, G=11.25," H==5; “K=45.
De 13, on aura par les formules du numéro précédent,
B=A—11.6,C=A—11,26, D= A—11.41, E=A—11.16,

et la quantité A restera indéterminée, parce qu'a cause de
1 7 7" 41" 4 7" =0, elle disparaitra des expressions des
quantités A du n° 34.

Si on fait A =196, on trouve

B'= 130, C=— 90,
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et la formule

V(A + BY + Cr" ++ D/ + Erv)

du n°® 34, coincidera avec celle de ‘5/—9’ dun® 30, parce qu’en

faisant e =7, on a r"=uat, r"=a*, r'" =a’ (n° 35); et les

formules dérivées de celle-ld coincideront aussi avec celles de
5 5

PR Ny B Sy Y [

37. Prenons pour dernier exemple I'équation 2*° — 1 = o.
Comme 13 — 1 = 12 =2.2.53, 'opération pourra se décomposer
en trois de la maniére suivante.

11 faut d’abord avoir une racine primitive pour le nombre 13,
et la table du n° 4, fournit le nombre 2 dont les puissances suc-
cessives jusqu’a la onziéme, divisées par 13 , donnent les restes,
2, 4, 8, 3, 6iurasins; 085,610, 7.

Ainsi en nommant 7 une racine de I’équation

z? - x4 2 4 2 4 2P - ete. + 1 = 0,

les autres onze racines seront

o e M i e e A i LR

On fera donc en général
+ afrr 4 a7t 4 2t 4 atr® 4 ar o al'r’;

et I’on prendra d’abord pour « une racine de I'équation y* — 1 =0,
ensorte que a*=—=1; ce qui réduira la fonction £ a la forme...

1 = X' -} «X’, dans laquelle
X =r—4rt47r 4747 4o
XS T R o e P
De 1a, on aura
Bom Bt oap, &= X4 X% 5 = aXET

On peut se dispenser de chercher la valeur de £°, en se servant
de l'expression de 8 du n® 11, qui ne renferme pas £°, et qui
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donne ici, & cause de y= 2 et de s==—1 somme des racines de 1é-
quation proposée, f =1 -}-(2 —1)£’; de sorte qu'en faisanta'——1,
on aura la valeur de &, et les deux racines X', X’ seront (no cité)

X! = _1+‘/(1_2£’)
9

X =1m V(G —2¥)

2

?

Pour avoir la valeur de £, il faut développer le produit X'X"
en puissances de r, ayant soin de rabaisser les puissances supé-
rieures & r'*, A cause de 7 =1, et l’on trouve X'X"= 3+, en
mettant s par la somme des racines r, r*, r4, etc. laquelle est

= — 1; de sorte qu'on aura £ = — 6, et les valeurs de X', X"
seront

2

'_—‘1"‘\/:_1—1 »____—'l—-\/—ll
X_.———2 X—_g— 1

38. On regardera maintenant les six racines qui composent la

quantité X' comme celles d’une équation du sixieme degré, et
on fera de nouveau

to= T A art et e @ o atry et

mais au lieu de prendre en général pour o une racine de I'équa-
tion ¥ — 1==0, ce qui demanderait ensuite le développement
de la siziéme puissance du polynome #,, nous prendrons de nou-
veau une racine de I’équation y*— 1 =0, de sorte qu'au moyen
de a*= 1, la fonction #, redeviendra de la forme 7, = X = aX’,
dans laquelle on aura

Xt giol P, X0 = 1 it TS
1
On aura ensuite , comme ci-dessus ,
TR T AR ’ &gt /2 2 ro 4 i
9,_1!1._.51 +af, £ =X" X, El—_zXle,
et & cause que la somme des racines est ici X', on aura sur-
le-champ
XI:X’—,—‘/G_:, X”:X’—‘/ﬁ_’l
1 2 1 2
on aura en méme tems 0, == X"+ (¢ —=1) £ et faisant a=—1,

¥ =X"—2¢,,
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Pour avoir £, il faudra développer le produit de X’ par X",
en se souvenant toujours que r**=—1, et 'on trouvera

XX = 5 -1 X3
ce qui donnera g =6 - 2X",
et par-conséquent .
¥ e X V(X 12~ 4XY)

1 2

X = X VX —ia )

L 2

39. Nous remarquerons ici que comme en mettant »* au lien
de 7, la fonction X’ devient X", et la fonction X* devient X’;
si on dénote par (X'), (X') ce que deviennent les fonctions
X', X', en y substituant 7* au lien de r dans toutes les puis-
sances de r, ce qui donne

(X)) == =1y (X)) =78 = ' P,
on aura les valeurs de (X' ), (X?), en échangeant dans celles

de X', X', les quantités X' , X' entre elles. On trouvera ainsi

iy o X (X" 10 — 4X)
(X)) = -

u Sk X.H—‘/(Xuﬂ— IQ—'-4X’)
(&)=

2

Ce sont les fonctions correspondantes & X', X’ quon obtien-

drait en procédant a I'égard des racines qui composent la fonction
X', comme on a fait surcelles de X'. Ces valeurs sont nécessaires
pour parvenir a celles de 7.

40. Pour cet effet, il faut encore regarder les trois racines qui
composent la fonction X' comme celles d’une équation du troi-

sitme degré , et faire en conséquence
t, = r = ar® 4 a’r?,

en prenant pour o une racine de I'équation y° — 1 = o.
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De 13, on formera la fonction
0, = &, ='§; =~ af, 4 @5},

et on trouvera, par le développement, en faisant a® =1, et
12i==1 - ces. expressions

£E=6+4+X, £ =3(X), & =3(X)
Donc nommant « et 3 les deux racines de I'équation

yY=+y-+1=o0,
et faisant
6, =6 4 X, 4+ 3a(X)) + 32 (X))
B, = 6 + X, + 3B(X,) -+ 38(X]),
on aura, comme dans le n* 23,

r

3 o & pa
X+ Vi 4+ vE
p— 3 L]

Ainsi 1a valeur de r est entitrement déterminée ; nous ne cher-
clierons pas a la simplifier , parce que, dans tous les cas, il est
toujours plus avantageux d’employer pour la résolution de I'équa-
tion #'* — 1 =0, ainsi que de toutes les équations de ce genre,
les formules connues en sinus et cosinus.

. 41. Je remarquerai, en finissant que la méthode exposée dans
cette Note, peut étre regardée comme une simplification de celle
que M. Gauss a indiquée d’une manitre générale dans l'article 360
des Disquisitiones arithmeticce. Celle-ci est fondée aussi sur le
développement d’une fonction semblable a la fonction que nous
avons désignée par 6; mais elle demande de plus la formation et
le développement d’autant d’autres fonctions du méme ordre que
'équation a de racines; ce qui alonge considérablement le calcul.

Notre méthode est indépendante de ces fonctions auxiliaires, et -

conduit directement aux expressions les plus simples des racines.

FIN.
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Correcrion (laissée par M. Lagrange) pour Uarticle 37
de la Note x111, page 270.

La régle donnée dans cet article pour savoir lequel des deux
systémes d’équations on doit choisir dans chaque cas, n’est pas
assez générale. =

M. Bret, Professeur de Mathématiques an Lycée de Grenoble,
a trouvé un exemple ou elle est en défaut.

Soit I'équation

axt ox* —8x 5 =o0;

la transformée en B est
65 - 1662 — 2560 — (64 )* = o,

dont les racines sont — 16, — 16, 16; ce qui donmne
VI =4, VI =4V—1, VI =4 \/—1.

La fonction A® — 4 AB—8C est > o,parce que A =0, C=8;
ainsi il faudrait prendre le premier systéme. On aurait d’abord

x=1+-a2V—1,

qui ne satisfait pas. En effet,
(1 4oV —1)=—344V—1,
(B VR it i/ —1 5

aiusi Péquation serait

——2h\/—1 —648Y—1 —8—16V—1 45
= 16 — 32¢/—1,
ce qui n'est pas zéro.
Le deuxiéme systéme donnerait

¥ —=—1—2V—1,
donc

— — 34 V—1—6--8y—1- 8416 V—1+ 5=0.
4o
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Mais je remarque que I'analyse donne simplement la condition

VI < VB X \VB7 = A® — 4AB + 8C;

d’ott il sensuit que le produit des trois radicaux V&, /&, V8",
doit étre €gal, et par conséquent de méme signe que la quantité
A?—=4AB - 8C. Donc si en prenant les trois radicaux positive-
ment, leur produit est de méme signe que celte quantité, ce
sera le premier systéme qui aura lieu ; mais s'il est de signe con-
traire, alors il faudra donner le signe — a I'un des trois radicaux,
ce qui donnera le deuxiéme systéme.

Dans I'exemple dont il s’agit on a

VI x VI X VI" = 4% 4V—1 X 4V=—1 =04,
- tandis que ' ‘
A% — 4AB -}- 8C = 64.
Ainsi c’est le second systéme qui a lieu.
La méprise vient de ce quon a supposé que le produit des
trois radicaux pris positivement, serait toujours positif.
Au reste on peut Oter toute ambiguité en prenant dans le pre-
mier systéme
7 3 — 4AB 4-8C
em — L ; 74 i,
% ViV x Vi
Dans I'exemple proposé, pour lequel

A3 — 4AB - 8C = 64,

a_")"-'.lnt fait v‘g—T_—_'. 4, \/@:‘iv——l’on a1ra v‘g-’-ﬂ_’m__‘.é\/.___li
alors le premier systéme donnera

xl=1’ r1=_1+2\/-*1?xff1=1,xu‘r=-—1-_-_-_-2v—n1,

véritables racines.
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